Back to index

4.12.19

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The End of General support for vSphere 6.7 will be on October 15, 2022. So, vSphere 6.7 will be deprecated for 4.11.

We want to encourage vSphere customers to upgrade to vSphere 7 in OCP 4.11 since VMware is EOLing (general support) for vSphere 6.7 in Oct 2022.

We want the cluster Upgradeable=false + have a strong alert pointing to our docs / requirements.

related slack: https://coreos.slack.com/archives/CH06KMDRV/p1647541493096729

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

This includes ibm-vpc-node-label-updater!

(Using separate cards for each driver because these updates can be more complicated)

There is a new driver release 5.0.0 since the last rebase that includes snapshot support:

https://github.com/kubernetes-sigs/ibm-vpc-block-csi-driver/releases/tag/v5.0.0

Rebase the driver on v5.0.0 and update the deployments in ibm-vpc-block-csi-driver-operator.
There are no corresponding changes in ibm-vpc-node-label-updater since the last rebase.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Epic Goal

  • Enable the migration from a storage intree driver to a CSI based driver with minimal impact to the end user, applications and cluster
  • These migrations would include, but are not limited to:
    • CSI driver for AWS EBS
    • CSI driver for GCP
    • CSI driver for Azure (file and disk)
    • CSI driver for VMware vSphere

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

This Epic tracks the GA of this feature

Epic Goal

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

OC mirror is GA product as of Openshift 4.11 .

The goal of this feature is to solve any future customer request for new features or capabilities in OC mirror 

Epic Goal

  • Mirror to mirror operations and custom mirroring flows required by IBM CloudPak catalog management

Why is this important?

  • IBM needs additional customization around the actual mirroring of images to enable CloudPaks to fully adopt OLM-style operator packaging and catalog management
  • IBM CloudPaks introduce additional compute architectures, increasing the download volume by 2/3rds to day, we need the ability to effectively filter non-required image versions of OLM operator catalogs during filtering for other customers that only require a single or a subset of the available image architectures
  • IBM CloudPaks regularly run on older OCP versions like 4.8 which require additional work to be able to read the mirrored catalog produced by oc mirror

Scenarios

  1. Customers can use the oc utility and delegate the actual image mirror step to another tool
  2. Customers can mirror between disconnected registries using the oc utility
  3. The oc utility supports filtering manifest lists in the context of multi-arch images according to the sparse manifest list proposal in the distribution spec

Acceptance Criteria

  • Customers can use the oc utility to mirror between two different air-gapped environments
  • Customers can specify the desired computer architectures and oc mirror will create sparse manifest lists in the target registry as a result

Dependencies (internal and external)

Previous Work:

  1. WRKLDS-369
  2. Disconnected Mirroring Improvement Proposal

Related Work:

  1. https://github.com/opencontainers/distribution-spec/pull/310
  2. https://github.com/distribution/distribution/pull/3536
  3. https://docs.google.com/document/d/10ozLoV7sVPLB8msLx4LYamooQDSW-CAnLiNiJ9SER2k/edit?usp=sharing

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

We plan to build Ironic Container Images using RHEL9 as base image in OCP 4.12

This is required because the ironic components have abandoned support for CentOS Stream 8 and Python 3.6/3.7 upstream during the most recent development cycle that will produce the stable Zed release, in favor of CentOS Stream 9 and Python 3.8/3.9

More info on RHEL8 to RHEL9 transition in OCP can be found at https://docs.google.com/document/d/1N8KyDY7KmgUYA9EOtDDQolebz0qi3nhT20IOn4D-xS4

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a SRE, I want hypershift operator to expose a metric when hosted control plane is ready. 

This should allow SRE to tune (or silence) alerts occurring while the hosted control plane is spinning up. 

 

 

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The Kube APIServer has a sidecar to output audit logs. We need similar sidecars for other APIServers that run on the control plane side. We also need to pass the same audit log policy that we pass to the KAS to these other API servers.

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Place holder epic to track spontaneous task which does not deserve its own epic.

AC:

We have connectDirectlyToCloudAPIs flag in konnectiviy socks5 proxy to dial directly to cloud providers without going through konnectivity.

This introduce another path for exception https://github.com/openshift/hypershift/pull/1722

We should consolidate both by keep using connectDirectlyToCloudAPIs until there's a reason to not.

 

Once the HostedCluster and NodePool gets stopped using PausedUntil statement, the awsprivatelink controller will continue reconciling.

 

How to test this:

  • Deploy a private cluster
  • Put it in pause once deployed
  • Delete the AWSEndPointService and the Service from the HCP namespace
  • And wait for a reconciliation, the result it's that they should not be recreated
  • Unpause it and wait for recreation.

AWS has a hard limit of 100 OIDC providers globally. 
Currently each HostedCluster created by e2e creates its own OIDC provider, which results in hitting the quota limit frequently and causing the tests to fail as a result.

 
DOD:
Only a single OIDC provider should be created and shared between all e2e HostedClusters. 

DoD:

At the moment if the input etcd kms encryption (key and role) is invalid we fail transparently.

We should check that both key and role are compatible/operational for a given cluster and fail in a condition otherwise

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

This is a clone of issue OCPBUGS-3172. The following is the description of the original issue:

Customer is trying to install the Logging operator, which appears to attempt to install a dynamic plugin. The operator installation fails in the console because permissions aren't available to "patch resource consoles".

We shouldn't block operator installation if permission issues prevent dynamic plugin installation.

This is an OSD cluster, presumably for a customer with "cluster-admin", although it may be a paired down permission set called "dedicated-admin".

See https://docs.google.com/document/d/1hYS-bm6aH7S6z7We76dn9XOFcpi9CGYcGoJys514YSY/edit for permissions investigation work on OSD

Description of problem:

Customer is not able anymore to provision new baremetal nodes in 4.10.35 using the same rootDeviceHints used in 4.10.10.
Customer uses HP DL360 Gen10, with exteranal SAN storage that is seen by the system as a multipath device. Latest IPA versions are implementing some changes to avoid wiping shared disks and this seems to affect what we should provide as rootDeviceHints.
They used to put /dev/sda as rootDeviceHints, in 4.10.35 it doesn't make the IPA write the image to the disk anymore because it sees the disk as part of a multipath device, we tried using the on top multipath device /dev/dm-0, the system is then able to write the image to the disk but then it gets stuck when it tried to issue a partprobe command, rebooting the systems to boot from the disk does not seem to help complete the provisioning, no workaround so far.

 

Version-Release number of selected component (if applicable):

 

How reproducible:

by trying to provisioning a baremetal node with a multipath device.

Steps to Reproduce:

1. Create a new BMH using a multipath device as rootDeviceHints
2.
3.

Actual results:

The node does not get provisioned

Expected results:

the node gets provisioned correctly

Additional info:

 

This is a clone of issue OCPBUGS-4350. The following is the description of the original issue:

Steps to reproduce:
Release: 4.13.0-0.nightly-2022-11-30-183109 (latest 4.12 nightly as well)
Create a HyperShift cluster on AWS, wait til its completed rolling out
Upgrade the HostedCluster by updating its release image to a newer one
Observe the 'network' clusteroperator resource in the guest cluster as well as the 'version' clusterversion resource in the guest cluster.
When the clusteroperator resource reports the upgraded release and the clusterversion resource reports the new release as applied, take a look at the ovnkube-master statefulset in the control plane namespace of the management cluster. It is still not finished rolling out.

Expected: that the network clusteroperator reports the new version only when all components have finished rolling out.

This is a clone of issue OCPBUGS-10807. The following is the description of the original issue:

Description of problem:

Cluster Network Operator managed component multus-admission-controller does not conform to Hypershift control plane expectations.

When CNO is managed by Hypershift, multus-admission-controller and other CNO-managed deployments should run with non-root security context. If Hypershift runs control plane on kubernetes (as opposed to Openshift) management cluster, it adds pod security context to its managed deployments, including CNO, with runAsUser element inside. In such a case CNO should do the same, set security context for its managed deployments, like multus-admission-controller, to meet Hypershift security rules.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1.Create OCP cluster using Hypershift using Kube management cluster
2.Check pod security context of multus-admission-controller

Actual results:

no pod security context is set on multus-admission-controller

Expected results:

pod security context is set with runAsUser: xxxx

Additional info:

Corresponding CNO change 

Description of problem:

Custom manifest files can be placed in the /openshift folder so that they will be applied during cluster installation.
Anyhow, if a file contains more than one manifests, all but the first are ignored.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1.Create the following custom manifest file in the /openshift folder:

```
apiVersion: v1
kind: ConfigMap
metadata:  
  name: agent-test  
  namespace: openshift-config
data:  
  value: agent-test
---
apiVersion: v1
kind: ConfigMap
metadata: 
name: agent-test-2
namespace: openshift-config
data: 
  value: agent-test-2
```
2. Create the agent ISO image and deploy a cluster

Actual results:

ConfigMap agent-test-2 does not exist in the openshift-config namespace

Expected results:

ConfigMap agent-test-2 must exist in the openshift-config namespace

Additional info:

 

Description of problem:

"opm alpha render-veneer semver" raise error when no "Candidate" in config yaml

Version-Release number of selected component (if applicable):

zhaoxia@xzha-mac semver % opm version
Version: version.Version{OpmVersion:"11644a543", GitCommit:"11644a5433442c33698d2eee8d3f865b0d9386c0", BuildDate:"2022-08-29T08:16:54Z", GoOs:"darwin", GoArch:"amd64"}

How reproducible:

always

Steps to Reproduce:

1. prepare catalog-semver-veneer-wrong.yaml 
zhaoxia@xzha-mac semver % cat catalog-semver-veneer-wrong.yaml 
Schema: olm.semver
GenerateMajorChannels: false
GenerateMinorChannels: true
Stable:
  Bundles:
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v1.0.2
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v2.1.0
Fast:
  Bundles:
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v0.0.1
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v2.0.1
  - Image: quay.io/olmqe/nginxolm-operator-bundle:v2.1.0 

2. run "opm alpha render-veneer semver"
zhaoxia@xzha-mac semver % opm alpha render-veneer semver catalog-semver-veneer-wrong.yaml
2022/08/29 16:48:56 semver "catalog-semver-veneer-wrong.yaml": semver-render: no bundles specified or no bundles could be rendered

3.

Actual results:

error "no bundles specified or no bundles could be rendered" is raised.

Expected results:

no error

Additional info:

 

Tracker issue for bootimage bump in 4.12. This issue should block issues which need a bootimage bump to fix.

The previous bump was OCPBUGS-1941.

For the disconnected installation , we should not be able to provision machines successfully with publicIP:true , this has been the behavior earlier till -
4.11 and around 17th Aug nightly released 4.12 , but it has started allowing creation of machines with publicIP:true set in machineset

Issue reproduced on - Cluster version - 4.12.0-0.nightly-2022-08-23-223922

It is always reproducible .

Steps :
Create machineset using yaml with 
{"spec":{"providerSpec":{"value":{"publicIP": true}}}}

Machineset created successfully and machine provisioned successfully .

This seems to be regression bug refer - https://bugzilla.redhat.com/show_bug.cgi?id=1889620

Here is the must gather log - https://drive.google.com/file/d/1UXjiqAx7obISTxkmBsSBuo44ciz9HD1F/view?usp=sharing

Here is the test successfully ran for 4.11 , for exactly same profile and machine creation failed with InvalidConfiguration Error- https://mastern-jenkins-csb-openshift-qe.apps.ocp-c1.prod.psi.redhat.com/job/ocp-common/job/Runner/575822/console

We can confirm disconnected cluster using below  there would be lot of mirrors used in those - 

oc get ImageContentSourcePolicy image-policy-aosqe -o yaml 

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
  creationTimestamp: "2022-08-24T09:08:47Z"
  generation: 1
  name: image-policy-aosqe
  resourceVersion: "34648"
  uid: 20e45d6d-e081-435d-b6bb-16c4ca21c9d6
spec:
  repositoryDigestMirrors:
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/olmqe
    source: quay.io/olmqe
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshifttest
    source: quay.io/openshifttest
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshift-qe-optional-operators
    source: quay.io/openshift-qe-optional-operators
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.stage.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: brew.registry.redhat.io

 

 

Description of problem:

Customer is running machine learning (ML) tasks on OpenShift Container Platform, for which large models need to be embedded in the container image. When building a new container image with large container image layers (>=10GB) and pushing it to the internal image registry, this fails with the following error message:

error: build error: Failed to push image: writing blob: uploading layer to https://image-registry.openshift-image-registry.svc:5000/v2/example/example-image/blobs/uploads/b305b374-af79-4dce-afe0-afe6893b0ada?_state=[..]: blob upload invalid

In the image registry Pod we can see the following error message:

time="2023-01-30T14:12:22.315726147Z" level=error msg="upload resumed at wrong offest: 10485760000 != 10738341637" [..]
time="2023-01-30T14:12:22.338264863Z" level=error msg="response completed with error" err.code="blob upload invalid" err.message="blob upload invalid" [..]

Backend storage is AWS S3. We suspect that this could be the following upstream bug: https://github.com/distribution/distribution/issues/1698

Version-Release number of selected component (if applicable):

Customer encountered the issue on OCP 4.11.20. We reproduced the issue on OCP 4.11.21:

$  oc version
Client Version: 4.12.0
Kustomize Version: v4.5.7
Server Version: 4.11.21
Kubernetes Version: v1.24.6+5658434

How reproducible:

Always

Steps to Reproduce:

1. Install OpenShift Container Platform cluster 4.11.21 on AWS
2. Confirm registry storage is on AWS S3
3. Create a new build including a 10GB file using the following command: `printf "FROM registry.fedoraproject.org/fedora:37\nRUN dd if=/dev/urandom of=/bigfile bs=1M count=10240" | oc new-build -D -`
4. Wait for some time for the build to run

Actual results:

Pushing the new build fails with the following error message:

error: build error: Failed to push image: writing blob: uploading layer to https://image-registry.openshift-image-registry.svc:5000/v2/example/example-image/blobs/uploads/b305b374-af79-4dce-afe0-afe6893b0ada?_state=[..]: blob upload invalid

Expected results:

Push of large container image layers succeeds

Additional info:

Description of problem:

$ oc adm must-gather -- gather_ingress_node_firewall
[must-gather      ] OUT Using must-gather plug-in image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:3dec5a08681e11eedcd31f075941b74f777b9187f0e711a498a212f9d96adb2f
When opening a support case, bugzilla, or issue please include the following summary data along with any other requested information:
ClusterID: 0ef60b50-4378-431d-8ca2-faa5af098274
ClusterVersion: Stable at "4.12.0-0.nightly-2022-09-26-111919"
ClusterOperators:
    clusteroperator/insights is not available (Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed
) because Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed[must-gather      ] OUT namespace/openshift-must-gather-fr7kc created
[must-gather      ] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-xx2fh created
[must-gather      ] OUT pod for plug-in image quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:3dec5a08681e11eedcd31f075941b74f777b9187f0e711a498a212f9d96adb2f created
[must-gather-xvfj4] POD 2022-09-28T16:57:00.887445531Z /bin/bash: /usr/bin/gather_ingress_node_firewall: Permission denied
[must-gather-xvfj4] OUT waiting for gather to complete
[must-gather-xvfj4] OUT downloading gather output
[must-gather-xvfj4] OUT receiving incremental file list
[must-gather-xvfj4] OUT ./
[must-gather-xvfj4] OUT 
[must-gather-xvfj4] OUT sent 27 bytes  received 40 bytes  26.80 bytes/sec
[must-gather-xvfj4] OUT total size is 0  speedup is 0.00
[must-gather      ] OUT namespace/openshift-must-gather-fr7kc deleted
[must-gather      ] OUT clusterrolebinding.rbac.authorization.k8s.io/must-gather-xx2fh deleted
Reprinting Cluster State:
When opening a support case, bugzilla, or issue please include the following summary data along with any other requested information:
ClusterID: 0ef60b50-4378-431d-8ca2-faa5af098274
ClusterVersion: Stable at "4.12.0-0.nightly-2022-09-26-111919"
ClusterOperators:
    clusteroperator/insights is not available (Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed
) because Reporting was not allowed: your Red Hat account is not enabled for remote support or your token has expired: UHC services authentication failed

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-11054. The following is the description of the original issue:

This is a clone of issue OCPBUGS-11038. The following is the description of the original issue:

Description of problem:

Backport support starting in 4.12.z to a new GCP region europe-west12

Version-Release number of selected component (if applicable):

4.12.z and 4.13.z

How reproducible:

Always

Steps to Reproduce:

1. Use openhift-install to deploy OCP in europe-west12

Actual results:

europe-west12 is not available as a supported region in the user survey

Expected results:

europe-west12 to be available as a supported region in the user survey

Additional info:

 

Description of problem:

The platform-operators-aggregated cluster operator wasn't created after enabling "TechPreviewNoUpgrade" featureGate, as follows,

MacBook-Pro:~ jianzhang$ oc patch featuregate cluster -p '{"spec": {"featureSet": "TechPreviewNoUpgrade"}}' --type=merge
featuregate.config.openshift.io/cluster patched

MacBook-Pro:~ jianzhang$ oc wait --for=condition=Available=True clusteroperators.config.openshift.io/platform-operators-aggregated
Error from server (NotFound): clusteroperators.config.openshift.io "platform-operators-aggregated" not found

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-20-095559

How reproducible:

always

Steps to Reproduce:

1. Install OCP 4.12 cluster.

2. Enable "TechPreviewNoUpgrade" feature gate.
MacBook-Pro:~ jianzhang$ oc patch featuregate cluster -p '{"spec": {"featureSet": "TechPreviewNoUpgrade"}}' --type=merge
featuregate.config.openshift.io/cluster patched 

3. Check platform-operators-aggregated cluster operator.
 

Actual results:

MacBook-Pro:~ jianzhang$ oc wait --for=condition=Available=True clusteroperators.config.openshift.io/platform-operators-aggregated
Error from server (NotFound): clusteroperators.config.openshift.io "platform-operators-aggregated" not found

Expected results:

The platform-operators-aggregated cluster operator can be created successfully.

Additional info:

The openshift-platform-operators pods running well.

MacBook-Pro:~ jianzhang$ oc get deploy -n openshift-platform-operators
NAME                                    READY   UP-TO-DATE   AVAILABLE   AGE
platform-operators-controller-manager   1/1     1            1           126m
platform-operators-rukpak-core          1/1     1            1           126m
platform-operators-rukpak-webhooks      2/2     2            2           126m
MacBook-Pro:~ jianzhang$ oc get co platform-operators-aggregated
Error from server (NotFound): clusteroperators.config.openshift.io "platform-operators-aggregated" not found

Description of problem:

documentationBaseURL still points to 4.10

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-08-31-101631

How reproducible:

Always

Steps to Reproduce:

1.Check documentationBaseURL on 4.12 cluster: 
# oc get configmap console-config -n openshift-console -o yaml | grep documentationBaseURL
      documentationBaseURL: https://access.redhat.com/documentation/en-us/openshift_container_platform/4.11/

2.
3.

Actual results:

1.documentationBaseURL is still pointing to 4.11

Expected results:

1.documentationBaseURL should point to 4.12

Additional info:

 

This is a clone of issue OCPBUGS-4700. The following is the description of the original issue:

Description of problem:

In at least 4.12.0-rc.0, a user with read-only access to ClusterVersion can see an "Update blocked" pop-up talking about "...alert above the visualization...".  It is referencing a banner about "This cluster should not be updated to the next minor version...", but that banner is not displayed because hasPermissionsToUpdate is false, so canPerformUpgrade is false.

Version-Release number of selected component (if applicable):

4.12.0-rc.0. Likely more. I haven't traced it out.

How reproducible:

Always.

Steps to Reproduce:

1. Install 4.12.0-rc.0
2. Create a user with cluster-wide read-only permissions. For me, it's via binding to a sudoer ClusterRole. I'm not sure where that ClusterRole comes from, but it's:

$ oc get -o yaml clusterrole sudoer
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
  creationTimestamp: "2020-05-21T19:39:09Z"
  name: sudoer
  resourceVersion: "7715"
  uid: 28eb2ffa-dccd-47e8-a2d5-6a95e0e8b1e9
rules:
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:admin
  resources:
  - systemusers
  - users
  verbs:
  - impersonate
- apiGroups:
  - ""
  - user.openshift.io
  resourceNames:
  - system:masters
  resources:
  - groups
  - systemgroups
  verbs:
  - impersonate

3. View /settings/cluster

Actual results:

See the "Update blocked" pop-up talking about "...alert above the visualization...".

Expected results:

Something more internally consistent. E.g. having the referenced banner "...alert above the visualization..." show up, or not having the "Update blocked" pop-up reference the non-existent banner.

Description of problem:

The reconciler removes the overlappingrangeipreservations.whereabouts.cni.cncf.io resources whether the pod is alive or not. 

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Create pods and check the overlappingrangeipreservations.whereabouts.cni.cncf.io resources:

$ oc get overlappingrangeipreservations.whereabouts.cni.cncf.io -A
NAMESPACE          NAME                      AGE
openshift-multus   2001-1b70-820d-4b04--13   4m53s
openshift-multus   2001-1b70-820d-4b05--13   4m49s

2.  Verify that when the ip-reconciler cronjob removes the overlappingrangeipreservations.whereabouts.cni.cncf.io resources when run:

$ oc get cronjob -n openshift-multus
NAME            SCHEDULE       SUSPEND   ACTIVE   LAST SCHEDULE   AGE
ip-reconciler   */15 * * * *   False     0        14m             4d13h

$ oc get overlappingrangeipreservations.whereabouts.cni.cncf.io -A
No resources found

$ oc get cronjob -n openshift-multus
NAME            SCHEDULE       SUSPEND   ACTIVE   LAST SCHEDULE   AGE
ip-reconciler   */15 * * * *   False     0        5s              4d13h

 

Actual results:

The overlappingrangeipreservations.whereabouts.cni.cncf.io resources are removed for each created pod by the ip-reconciler cronjob.
The "overlapping ranges" are not used. 

Expected results:

The overlappingrangeipreservations.whereabouts.cni.cncf.io should not be removed regardless of if a pod has used an IP in the overlapping ranges.

Additional info:

 

Description of problem:

The name of "Role" on Compute -> Nodes page should update to "Roles" to match the name in the CLI

Compare with other resources, the title of the column should keep pace with the name in CLI

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-08-15-150248

How reproducible:

Always

Steps to Reproduce:
1.  Login OCP with CLI, use below command to get nodes information

     $ oc get nodes
2. Go to Compute -> nodes page, check the column name of "Role"
3.

Actual results:

CLI will return information as below shown, and the title of the column is "ROLES"

NAME                                         STATUS   ROLES    AGE   VERSION
ip-10-0-145-18.us-east-2.compute.internal    Ready    worker   9h    v1.24.0+4f0dd4d
ip-10-0-145-203.us-east-2.compute.internal   Ready    master   9h    v1.24.0+4f0dd4d
ip-10-0-163-205.us-east-2.compute.internal   Ready    master   9h    v1.24.0+4f0dd4d
ip-10-0-169-118.us-east-2.compute.internal   Ready    worker   9h    v1.24.0+4f0dd4d
ip-10-0-198-234.us-east-2.compute.internal   Ready    master   9h    v1.24.0+4f0dd4d
ip-10-0-212-34.us-east-2.compute.internal    Ready    worker   9h    v1.24.0+4f0dd4d

But in UI, the name of ROLES is "Role" which is incorrect. (Attached)

Expected results:

The title of "Role" should update to "Roles"

Additional info:

This is a clone of issue OCPBUGS-10864. The following is the description of the original issue:

Description of problem:

APIServer service not selected correctly for PublicAndPrivate when external-dns isn't configured. 
Image: 4.14 Hypershift operator + OCP 4.14.0-0.nightly-2023-03-23-050449

jiezhao-mac:hypershift jiezhao$ oc get hostedcluster/jz-test -n clusters -ojsonpath='{.spec.platform.aws.endpointAccess}{"\n"}'
PublicAndPrivate

    - lastTransitionTime: "2023-03-24T15:13:15Z"
      message: Cluster operators console, dns, image-registry, ingress, insights,
        kube-storage-version-migrator, monitoring, openshift-samples, service-ca are
        not available
      observedGeneration: 3
      reason: ClusterOperatorsNotAvailable
      status: "False"
      type: ClusterVersionSucceeding

services:
  - service: APIServer
   servicePublishingStrategy:
    type: LoadBalancer
  - service: OAuthServer
   servicePublishingStrategy:
    type: Route
  - service: Konnectivity
   servicePublishingStrategy:
    type: Route
  - service: Ignition
   servicePublishingStrategy:
    type: Route
  - service: OVNSbDb
   servicePublishingStrategy:
    type: Route

jiezhao-mac:hypershift jiezhao$ oc get service -n clusters-jz-test | grep kube-apiserver
kube-apiserver            LoadBalancer  172.30.211.131  aa029c422933444139fb738257aedb86-9e9709e3fa1b594e.elb.us-east-2.amazonaws.com  6443:32562/TCP         34m
kube-apiserver-private        LoadBalancer  172.30.161.79  ab8434aa316e845c59690ca0035332f0-d818b9434f506178.elb.us-east-2.amazonaws.com  6443:32100/TCP         34m
jiezhao-mac:hypershift jiezhao$

jiezhao-mac:hypershift jiezhao$ cat hostedcluster.kubeconfig | grep server
  server: https://ab8434aa316e845c59690ca0035332f0-d818b9434f506178.elb.us-east-2.amazonaws.com:6443
jiezhao-mac:hypershift jiezhao$

jiezhao-mac:hypershift jiezhao$ oc get node --kubeconfig=hostedcluster.kubeconfig 
E0324 11:17:44.003589   95300 memcache.go:238] couldn't get current server API group list: Get "https://ab8434aa316e845c59690ca0035332f0-d818b9434f506178.elb.us-east-2.amazonaws.com:6443/api?timeout=32s": dial tcp 10.0.129.24:6443: i/o timeout

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1.Create a PublicAndPrivate cluster without external-dns
2.access the guest cluster (it should fail)
3.

Actual results:

unable to access the guest cluster via 'oc get node --kubeconfig=<guest cluster kubeconfig>', some guest cluster co are not available

Expected results:

The cluster is up and running, the guest cluster can be accessed via 'oc get node --kubeconfig=<guest cluster kubeconfig>'

Additional info:

 

 

Originally reported by lance5890 in issue https://github.com/openshift/cluster-etcd-operator/issues/1000

Under some circumstances the static pod machinery fails to populate the node status in time to generate the correct env variables for ETCD_URL_HOST, ETCD_NAME etc. The pods that come up will fail to accept those variables.

This is particularly pronounced in SNO topologies, leading to installation failures. 

The fix is to fail fast in the targetconfig/envvar controller to ensure the CEO goes degraded instead of silently failing on the rollout of an invalid static pod.

Both `[sig-devex][Feature:ImageEcosystem][mysql][Slow] openshift mysql image Creating from a template should instantiate the template [apigroup:apps.openshift.io]` and `[sig-devex][Feature:ImageEcosystem][mariadb][Slow] openshift mariadb image Creating from a template should instantiate the template [apigroup:image.openshift.io][apigroup:operator.openshift.io][apigroup:config.openshift.io][apigroup:apps.openshift.io]` are repeatedly failing over multiple PRs.

More links in https://github.com/openshift/origin/pull/27502#issuecomment-1304613482

Opening this issue to temporarily skip the broken tests to unblocking merging PRs in openshift/origin:master

More details in https://issues.redhat.com/browse/OCPBUGS-3339

Description of problem:

The Alertmanager silence create / edit form got a new "Negative matcher" option in 4.12 (see https://issues.redhat.com/browse/OCPBUGSM-47734). However, there is nothing to explain what this option means and it will likely not be obvious from the label alone unless you are already quite familiar with Alertmanager.

After discussion with the docs team, it was decided that adding some explanation in context in the UI would be much better than adding an explanation to the documentation. 

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Go to Admin perspective
2. Go to Observe > Alerting > Silences page
3. Click on the Create button ("Negative matcher" option is shown with no explanation)

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

With every pod update we are executing a mutate operation to add the pod port to the port group or add the pod IP to an address set. This functionally doesn't hurt, since mutate will not add duplicate values to the same set. However, this is bad for performance. For example, with a 730 network policies affecting a pod, and issuing 7 pod updates would result in over 5k transactions.

This is a clone of issue OCPBUGS-7780. The following is the description of the original issue:

Description of problem:

4.9 and 4.10 oc calls to oc adm upgrade channel ... for 4.11+ clusters would clear spec.capabilities. Not all that many clusters try to restrict capabilities, but folks will need to bump their channel for at least every other minor (if their using EUS channels), and while we recommend folks use an oc from the 4.y they're heading towards, we don't have anything in place to enforce that.

Version-Release number of selected component (if applicable):

4.9 and 4.10 oc are exposed vs. the new-in-4.11 spec.capabilities. Newer oc could theoretically be exposed vs. any new ClusterVersion spec capabilities.

How reproducible:

100%

Steps to Reproduce:

1. Install a 4.11+ cluster with None capabilities.
2. Set the channel with a 4.10.51 oc, like oc adm upgrade channel fast-4.11.
3. Check the capabilities with oc get -o json clusterversion version | jq -c .spec.capabilities.

Actual results:

null

Expected results:

{"baselineCapabilitySet":"None"}

This is a clone of issue OCPBUGS-10622. The following is the description of the original issue:

Description of problem:

Unit test failing 

=== RUN   TestNewAppRunAll/app_generation_using_context_dir
    newapp_test.go:907: app generation using context dir: Error mismatch! Expected <nil>, got supplied context directory '2.0/test/rack-test-app' does not exist in 'https://github.com/openshift/sti-ruby'
    --- FAIL: TestNewAppRunAll/app_generation_using_context_dir (0.61s)


Version-Release number of selected component (if applicable):

 

How reproducible:

100

Steps to Reproduce:

see for example https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/openshift_oc/1376/pull-ci-openshift-oc-master-images/1638172620648091648 

Actual results:

unit tests fail

Expected results:

TestNewAppRunAll unit test should pass

Additional info:

 

Description of problem:

When all projects are selected, workloads list page and details page shows inconsistent HorizontalPodAutoscaler actions

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-07-25-010250

How reproducible:

Always

Steps to Reproduce:

  1. cluster admin goes to All projects deployments list page, click the kebab button of deployment/api-server in openshift-apiserver namespace
  2. goes to deployment details page /k8s/ns/openshift-apiserver/deployments/apiserver, click 'Actions' and check HorizontalPodAutoscaler related action items
  3. goes to project deployment list page /k8s/ns/openshift-apiserver/deployments, check the action items

Actual results:

  1. the HPA action is 'Add PodDisruptionBudget'
  2. the HPA actions are 'Edit HorizontalPodAutoscaler' and 'Remove HorizontalPodAutoscaler'
  3. the HPA actions are 'Edit HorizontalPodAutoscaler' and 'Remove HorizontalPodAutoscaler'

Expected results:

  1. workloads list and details page should have consistent HPA action items when 'All projects' are selected

Additional info:

This is a clone of issue OCPBUGS-4357. The following is the description of the original issue:

Description of problem:

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

When trying to enable Hardware Backed Management Ports (e.g. Virtual functions) on BF2 in NIC mode OR any other MLX NICs (CX-6, CX-5) by setting the node_mgmt_port_netdev_flags flags to a VF in the CNO; then OVN-K Node will crash.

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Always

Steps to Reproduce:

Start by enabling OvS HWOL and setting sriovnetworknodepolicy
https://docs.openshift.com/container-platform/4.11/networking/hardware_networks/configuring-hardware-offloading.html
1. Scale down CNO: oc scale --replicas=0 deploy/network-operator -n openshift-network-operator
2. Make changes to OVN-K node: oc edit daemonsets ovnkube-node -n openshift-ovn-kubernetes
    a. Find "node_mgmt_port_netdev_flags=" and replace it with something like this:
          node_mgmt_port_netdev_flags=
          if [[ ${K8S_NODE} != *"master"* ]]; then
                node_mgmt_port_netdev_flags="--ovnkube-node-mgmt-port-netdev=ens1f0v0"
          fi
     b. Additionally you have to add the "node_mgmt_port_netdev_flags"  to the " exec /usr/bin/ovnkube --init-node "${K8S_NODE}"" call in the same script. Since this is missing.
3. Save the edit.
4. Observe OVN-K node on baremetal worker nodes.

Actual results:

I0822 14:21:56.250285  496356 ovs.go:204] Exec(3): stderr: ""
I0822 14:21:56.250290  496356 node.go:310] Detected support for port binding with external IDs
I0822 14:21:56.250516  496356 management-port-dpu.go:181] Setup management port dpu host: ens1f0v0
F0822 14:21:56.250568  496356 ovnkube.go:133] failed to set management port name. file exists

Workaround is to go to the node and run this command: sudo ovs-vsctl del-port br-int ovn-k8s-mp0

Expected results:

There should not be any errors when changing node_mgmt_port_netdev_flags to a valid value.

Additional info:

Reported here: https://github.com/ovn-org/ovn-kubernetes/pull/3160
Discussed briefly here: https://issues.redhat.com/browse/OCPBUGS-4098
Fixed Upstream here: https://github.com/ovn-org/ovn-kubernetes/pull/3251

Description of problem:

catsrc is not ready due to "compute digest: compute hash: write tar: open /tmp/cache/cache: permission denied"

Version-Release number of selected component (if applicable):

zhaoxia@xzha-mac test % ../bin/opm version  
Version: version.Version{OpmVersion:"b94e073b5", GitCommit:"b94e073b5187ecaa687c322beccf76f1d1f26d54", BuildDate:"2022-08-29T06:30:05Z", GoOs:"darwin", GoArch:"amd64"}
zhaoxia@xzha-mac test % oc exec catalog-operator-79d885b755-6cnbp  -- olm --version
OLM version: 0.19.0
git commit: dfa7f0e70578432117e63867706630cda5366fb7

How reproducible:

always

Steps to Reproduce:

1. generate index image
zhaoxia@xzha-mac test % mkdir catalog
zhaoxia@xzha-mac test % ../bin/opm generate dockerfile catalog
zhaoxia@xzha-mac test % cat catalog.Dockerfile 
# The base image is expected to contain
# /bin/opm (with a serve subcommand) and /bin/grpc_health_probe
FROM quay.io/operator-framework/opm:latest


# Configure the entrypoint and command
ENTRYPOINT ["/bin/opm"]
CMD ["serve", "/configs", "--cache-dir=/tmp/cache"]


# Copy declarative config root into image at /configs and pre-populate serve cache
ADD catalog /configs
RUN ["/bin/opm", "serve", "/configs", "--cache-dir=/tmp/cache", "--cache-only"]


# Set DC-specific label for the location of the DC root directory
# in the image
LABEL operators.operatorframework.io.index.configs.v1=/configs

zhaoxia@xzha-mac test % docker build . -f catalog.Dockerfile -t quay.io/olmqe/nginxolm-operator-index:2726 
zhaoxia@xzha-mac test % docker push quay.io/olmqe/nginxolm-operator-index:2726

2. create catsrc
zhaoxia@xzha-mac test % cat catsrc.yaml 
apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: test-index
  namespace: test-1
spec:
  displayName: Test
  publisher: OLM-QE
  sourceType: grpc
  image: quay.io/olmqe/nginxolm-operator-index:2726
  updateStrategy:
    registryPoll:
      interval: 10m

oc new-project test-1
oc apply -f catsrc.yaml 
 3. check pod status
zhaoxia@xzha-mac test % oc get pod
NAME               READY   STATUS             RESTARTS        AGE
test-index-hbqlv   0/1     Error              8 (5m13s ago)   16m
test-index-l6mzq   0/1     CrashLoopBackOff   10 (59s ago)    27m

zhaoxia@xzha-mac test % oc get pod test-index-hbqlv -o yaml
apiVersion: v1
kind: Pod
metadata:
  annotations:
    cluster-autoscaler.kubernetes.io/safe-to-evict: "true"
    k8s.v1.cni.cncf.io/network-status: |-
      [{
          "name": "openshift-sdn",
          "interface": "eth0",
          "ips": [
              "10.131.0.84"
          ],
          "default": true,
          "dns": {}
      }]
    k8s.v1.cni.cncf.io/networks-status: |-
      [{
          "name": "openshift-sdn",
          "interface": "eth0",
          "ips": [
              "10.131.0.84"
          ],
          "default": true,
          "dns": {}
      }]
    kubectl.kubernetes.io/last-applied-configuration: |
      {"apiVersion":"operators.coreos.com/v1alpha1","kind":"CatalogSource","metadata":{"annotations":{},"name":"test-index","namespace":"test-1"},"spec":{"displayName":"Test","image":"quay.io/olmqe/nginxolm-operator-index:2726","publisher":"OLM-QE","sourceType":"grpc","updateStrategy":{"registryPoll":{"interval":"10m"}}}}
    openshift.io/scc: restricted-v2
    seccomp.security.alpha.kubernetes.io/pod: runtime/default
  creationTimestamp: "2022-08-29T06:57:55Z"
  generateName: test-index-
  labels:
    catalogsource.operators.coreos.com/update: test-index
    olm.catalogSource: ""
    olm.pod-spec-hash: 777849c67c
  name: test-index-hbqlv
  namespace: test-1
  ownerReferences:
  - apiVersion: operators.coreos.com/v1alpha1
    blockOwnerDeletion: false
    controller: false
    kind: CatalogSource
    name: test-index
    uid: 5ef60ce9-6ade-43e1-bae4-7d69f6c9d5e0
  resourceVersion: "218774"
  uid: 7606a54a-6a7d-4979-833a-97c2f87a88b8
spec:
  containers:
  - image: quay.io/olmqe/nginxolm-operator-index:2726
    imagePullPolicy: Always
    livenessProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 3
      initialDelaySeconds: 10
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 5
    name: registry-server
    ports:
    - containerPort: 50051
      name: grpc
      protocol: TCP
    readinessProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 3
      initialDelaySeconds: 5
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 5
    resources:
      requests:
        cpu: 10m
        memory: 50Mi
    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop:
        - ALL
      readOnlyRootFilesystem: false
      runAsNonRoot: true
      runAsUser: 1001130000
    startupProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 15
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 1
    terminationMessagePath: /dev/termination-log
    terminationMessagePolicy: FallbackToLogsOnError
    volumeMounts:
    - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
      name: kube-api-access-bfzvh
      readOnly: true
  dnsPolicy: ClusterFirst
  enableServiceLinks: true
  imagePullSecrets:
  - name: test-index-dockercfg-wp8s4
  nodeName: qe-daily-412-0829-qf9lx-worker-1-djpwq
  nodeSelector:
    kubernetes.io/os: linux
  preemptionPolicy: PreemptLowerPriority
  priority: 0
  restartPolicy: Always
  schedulerName: default-scheduler
  securityContext:
    fsGroup: 1001130000
    seLinuxOptions:
      level: s0:c34,c4
    seccompProfile:
      type: RuntimeDefault
  serviceAccount: test-index
  serviceAccountName: test-index
  terminationGracePeriodSeconds: 30
  tolerations:
  - effect: NoExecute
    key: node.kubernetes.io/not-ready
    operator: Exists
    tolerationSeconds: 300
  - effect: NoExecute
    key: node.kubernetes.io/unreachable
    operator: Exists
    tolerationSeconds: 300
  - effect: NoSchedule
    key: node.kubernetes.io/memory-pressure
    operator: Exists
  volumes:
  - name: kube-api-access-bfzvh
    projected:
      defaultMode: 420
      sources:
      - serviceAccountToken:
          expirationSeconds: 3607
          path: token
      - configMap:
          items:
          - key: ca.crt
            path: ca.crt
          name: kube-root-ca.crt
      - downwardAPI:
          items:
          - fieldRef:
              apiVersion: v1
              fieldPath: metadata.namespace
            path: namespace
      - configMap:
          items:
          - key: service-ca.crt
            path: service-ca.crt
          name: openshift-service-ca.crt
status:
  conditions:
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    status: "True"
    type: Initialized
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    message: 'containers with unready status: [registry-server]'
    reason: ContainersNotReady
    status: "False"
    type: Ready
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    message: 'containers with unready status: [registry-server]'
    reason: ContainersNotReady
    status: "False"
    type: ContainersReady
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    status: "True"
    type: PodScheduled
  containerStatuses:
  - containerID: cri-o://54d7a5ba94c061fb86ad056ad964dbda2824c864c6fdcd2d7d5a7ada515bc70e
    image: quay.io/olmqe/nginxolm-operator-index:2726
    imageID: quay.io/olmqe/nginxolm-operator-index@sha256:d70f38fa773ea5030b5b80bfe34d9168aabff5039ead44b7f7e7cd76f8705eb1
    lastState:
      terminated:
        containerID: cri-o://54d7a5ba94c061fb86ad056ad964dbda2824c864c6fdcd2d7d5a7ada515bc70e
        exitCode: 1
        finishedAt: "2022-08-29T07:14:23Z"
        message: |+
          Error: compute digest: compute hash: write tar: open /tmp/cache/cache: permission denied
          Usage:
            opm serve <source_path> [flags]


          Flags:
                --cache-dir string         if set, sync and persist server cache directory
                --cache-only               sync the serve cache and exit without serving
                --debug                    enable debug logging
            -h, --help                     help for serve
            -p, --port string              port number to serve on (default "50051")
                --pprof-addr string        address of startup profiling endpoint (addr:port format)
            -t, --termination-log string   path to a container termination log file (default "/dev/termination-log")


          Global Flags:
                --skip-tls-verify   skip TLS certificate verification for container image registries while pulling bundles
                --use-http          use plain HTTP for container image registries while pulling bundles


        reason: Error
        startedAt: "2022-08-29T07:14:23Z"
    name: registry-server
    ready: false
    restartCount: 8
    started: false
    state:
      waiting:
        message: back-off 5m0s restarting failed container=registry-server pod=test-index-hbqlv_test-1(7606a54a-6a7d-4979-833a-97c2f87a88b8)
        reason: CrashLoopBackOff
  hostIP: 10.242.0.4
  phase: Running
  podIP: 10.131.0.84
  podIPs:
  - ip: 10.131.0.84
  qosClass: Burstable
  startTime: "2022-08-29T06:57:55Z" 

Actual results:

the status of pod for catsrc is not running

Expected results:

the status of pod for catsrc is running

Additional info:

When using project openshift-marketplace, the same error will be raised.

Error: compute digest: compute hash: write tar: open /tmp/cache/cache: permission denied

Description of problem:

For some reason, some of the packets on a DNS conversation to the {{openshift-dns/dns-default}} service cluster IP don't get properly denatted, i.e. the reply packet has the pod IP as source IP instead of the service IP.

Version-Release number of selected component (if applicable):

4.10.25

How reproducible:

Sometimes

Steps to Reproduce:

1. Try to resolve DNS with cluster DNS

Actual results:

DNS timeout. Reply packets have the pod IP instead of the service IP the request was sent to.

Expected results:

DNS working.

Additional info:

I'll elaborate about this in the attachments, but I could find nothing wrong in nbdb or any OVN-Kubernetes or OVN logs that rang a bell.
The only interesting thing I could see was that `conntrack -L` had no reference to this conversation, so it makes kind of sense that the reply packet address is not translated back to the service IP one, but I have not been able to find the reason of this.
The query/response packets can be correlated via DNS transaction ID.

This bug is a backport clone of [Bugzilla Bug 2050230](https://bugzilla.redhat.com/show_bug.cgi?id=2050230). The following is the description of the original bug:

Description of problem:
In a large cluster, sdn daemonset can DoS the kube-apiserver with un-paginated LIST calls on high count resources.

Version-Release number of selected component (if applicable):

How reproducible:
NA

Steps to Reproduce:
NA

Actual results:
Kube API Server and Openshift API Server in one of the cluster keeps restarting, without proper exception. The cluster is not accessible.

Expected results:
Kube API Server and Openshift API Server should be stable.

Additional info:

Description of problem:


Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


Description of problem:

4.12 tech-preview jobs are suffering:

$ w3m -dump -cols 200 'https://search.ci.openshift.org/?search=event+happened.*no+matches+for+kind.*InsightsDataGather&maxAge=48h&type=junit' | grep 'failures match' | sort
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview-serial (all) - 10 runs, 100% failed, 90% of failures match = 90% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-azure-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-azure-sdn-techpreview-serial (all) - 10 runs, 100% failed, 90% of failures match = 90% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-gcp-sdn-techpreview (all) - 10 runs, 100% failed, 100% of failures match = 100% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-gcp-sdn-techpreview-serial (all) - 10 runs, 100% failed, 100% of failures match = 100% impact

with runs like this failing:

: [sig-arch] events should not repeat pathologically expand_less	0s
{  1 events happened too frequently

event happened 138 times, something is wrong: ns/default namespace/default - reason/Unable to find REST mapping for %s/%s: %w InsightsDataGather.config.openshift.io%!(EXTRA string=v1, *meta.NoKindMatchError=no matches for kind "InsightsDataGather" in version "config.openshift.io/v1")}

based on events like:

$ curl -s https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview/1597393851226525696/artifacts/e2e-aws-sdn-techpreview/gather-extra/artifacts/events.json | jq -r '.items[] | select(.metadata.namespace == "default" and (.message | contains("InsightsDataGather")))'
{
  "apiVersion": "v1",
  "count": 145,
  "eventTime": null,
  "firstTimestamp": "2022-11-29T01:32:16Z",
  "involvedObject": {
    "apiVersion": "v1",
    "kind": "Namespace",
    "name": "default",
    "namespace": "default"
  },
  "kind": "Event",
  "lastTimestamp": "2022-11-29T02:19:36Z",
  "message": "InsightsDataGather.config.openshift.io%!(EXTRA string=v1, *meta.NoKindMatchError=no matches for kind \"InsightsDataGather\" in version \"config.openshift.io/v1\")",
  "metadata": {
    "creationTimestamp": "2022-11-29T01:32:16Z",
    "name": "default.172bea26177786ae",
    "namespace": "default",
    "resourceVersion": "237357",
    "uid": "187cf3a0-cf4b-4cd1-ae72-51b5d77b7e73"
  },
  "reason": "Unable to find REST mapping for %s/%s: %w",
  "reportingComponent": "",
  "reportingInstance": "",
  "source": {
    "component": "run-resourcewatch-config-observer-controller-configobservercontroller"
  },
  "type": "Warning"
}

Version-Release number of selected component (if applicable):

4.12 tech-preview jobs are impacted.

How reproducible:

100% for some job flavors, per the search CI output above.

Steps to Reproduce:

1. Look at test results for any of the impacted job flavors.

Actual results:

Lots of NoKindMatchError events for v1 InsightsDataGather (it's only v1alpha1).

Expected results:

Passing test-cases.

Additional info:

The problematic REST-mapping client was removed from 4.13/dev as part of origin#27596.

When installing OCP cluster with worker nodes VM type specified as high performance, some of the configuration settings of said VMs do not match the configuration settings a high performance VM should have.

Specific configurations that do not match are described in subtasks.

 

Default configuration settings of high performance VMs:
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/virtual_machine_management_guide/index?extIdCarryOver=true&sc_cid=701f2000001Css5AAC#Configuring_High_Performance_Virtual_Machines_Templates_and_Pools

When installing OCP cluster with worker nodes VM type specified as high performance, manual and automatic migration is enabled in the said VMs.
However, high performance worker VMs are created with default values of the engine, so only manual migration should be enabled.

Default configuration settings of high performance VMs:
https://access.redhat.com/documentation/en-us/red_hat_virtualization/4.4/html-single/virtual_machine_management_guide/index?extIdCarryOver=true&sc_cid=701f2000001Css5AAC#Configuring_High_Performance_Virtual_Machines_Templates_and_Pools

How reproducible: 100%

How to reproduce:

1. Create install-config.yaml with a vmType field and set it to high performance, i.e.:

apiVersion: v1
baseDomain: basedomain.com
compute:
- architecture: amd64
  hyperthreading: Enabled
  name: worker
  platform:
    ovirt:
      affinityGroupsNames: []
      vmType: high_performance
  replicas: 2
...

2. Run installation

./openshift-install create cluster --dir=resources --log-level=debug

3. Check worker VM's configuration in the RHV webconsole.

Expected:
Only manual migration (under Host) should be enabled.

Actual:
Manual and automatic migration is enabled.

 Currently controller will set status done each time it sees host that is ready in k8s without looking if it was already set.

time="2022-09-13T19:03:45Z" level=info msg="Found new ready node ocp-2.cluster1.kpsalerno.us.ibm.com with inventory id 2da64d56-5057-78c6-ea6e-bf74a783bd79, kubernetes id 2da64d56-5057-78c6-ea6e-bf74a783bd79, updating its status to Done" func="github.com/openshift/assisted-installer/src/assisted_installer_controller.(*controller).waitAndUpdateNodesStatus" file="/remote-source/app/src/assisted_installer_controller/assisted_installer_controller.go:255" request_id=6258e5a2-4e78-4148-a913-45d704a0fa1d

time="2022-09-13T19:04:05Z" level=info msg="Found new ready node ocp-2.cluster1.kpsalerno.us.ibm.com with inventory id 2da64d56-5057-78c6-ea6e-bf74a783bd79, kubernetes id 2da64d56-5057-78c6-ea6e-bf74a783bd79, updating its status to Done" func="github.com/openshift/assisted-installer/src/assisted_installer_controller.(*controller).waitAndUpdateNodesStatus" file="/remote-source/app/src/assisted_installer_controller/assisted_installer_controller.go:255" request_id=49e4e63f-cf4f-4b9f-b1f3-923c473c09dd

 

 

Description of problem:
Pipeline Repository (Pipeline-as-code) list never shows an Event type.

Version-Release number of selected component (if applicable):
4.9+

How reproducible:
Always

Steps to Reproduce:

  1. Install Pipelines Operator and setup a Pipeline-as-code repository
  2. Trigger an event and a build

Actual results:
Pipeline Repository list shows a column Event type but no value.

Expected results:
Pipeline Repository list should show the Event type from the matching Pipeline Run.

Similar to the Pipeline Run Details page based on the label.

Additional info:
The list page packages/pipelines-plugin/src/components/repository/list-page/RepositoryRow.tsx renders obj.metadata.namespace as event type.

I believe we should show the Pipeline Run event type instead. packages/pipelines-plugin/src/components/repository/RepositoryLinkList.tsx uses

{plrLabels[RepositoryLabels[RepositoryFields.EVENT_TYPE]]}

to render it.

Also the Pipeline Repository details page tried to render the Branch and Event type from the Repository resource. My research says these properties doesn't exist on the Repository resource. The code should be removed from the Repository details page.

Description of problem:

For OVNK to become CNCF complaint, we need to support session affinity timeout feature and enable the e2e's on OpenShift side. This bug tracks the efforts to get this into 4.12 OCP.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-6777. The following is the description of the original issue:

Description of problem:

"create manifests" without an existing "install-config.yaml" missing 4 YAML files in "<install dir>/openshift" which leads to "create cluster" failure

Version-Release number of selected component (if applicable):

$ ./openshift-install version
./openshift-install 4.13.0-0.nightly-2023-01-27-165107
built from commit fca41376abe654a9124f0450727579bb85591438
release image registry.ci.openshift.org/ocp/release@sha256:29b1bc2026e843d7a2d50844f6f31aa0d7eeb0df540c7d9339589ad889eee529
release architecture amd64

How reproducible:

Always

Steps to Reproduce:

1. "create manifests"
2. "create cluster" 

Actual results:

1. After "create manifests", in "<install dir>/openshift", there're 4 YAML files missing, including "99_cloud-creds-secret.yaml", "99_kubeadmin-password-secret.yaml", "99_role-cloud-creds-secret-reader.yaml", and "openshift-install-manifests.yaml", comparing with "create manifests" with an existing "install-config.yaml".
2. The installation failed without any worker nodes due to error getting credentials secret "gcp-cloud-credentials" in namespace "openshift-machine-api".

Expected results:

1. "create manifests" without an existing "install-config.yaml" should generate the same set of YAML files as "create manifests" with an existing "install-config.yaml".
2. Then the subsequent "create cluster" should succeed.

Additional info:

The working scenario: "create manifests" with an existing "install-config.yaml"

$ ./openshift-install version
./openshift-install 4.13.0-0.nightly-2023-01-27-165107
built from commit fca41376abe654a9124f0450727579bb85591438
release image registry.ci.openshift.org/ocp/release@sha256:29b1bc2026e843d7a2d50844f6f31aa0d7eeb0df540c7d9339589ad889eee529
release architecture amd64
$ 
$ mkdir test30
$ cp install-config.yaml test30
$ yq-3.3.0 r test30/install-config.yaml platform
gcp:
  projectID: openshift-qe
  region: us-central1
$ yq-3.3.0 r test30/install-config.yaml metadata
creationTimestamp: null
name: jiwei-0130a
$ ./openshift-install create manifests --dir test30
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json" 
INFO Consuming Install Config from target directory 
WARNING Discarding the Openshift Manifests that was provided in the target directory because its dependencies are dirty and it needs to be regenerated 
INFO Manifests created in: test30/manifests and test30/openshift 
$ 
$ tree test30
test30
├── manifests
│   ├── cloud-controller-uid-config.yml
│   ├── cloud-provider-config.yaml
│   ├── cluster-config.yaml
│   ├── cluster-dns-02-config.yml
│   ├── cluster-infrastructure-02-config.yml
│   ├── cluster-ingress-02-config.yml
│   ├── cluster-network-01-crd.yml
│   ├── cluster-network-02-config.yml
│   ├── cluster-proxy-01-config.yaml
│   ├── cluster-scheduler-02-config.yml
│   ├── cvo-overrides.yaml
│   ├── kube-cloud-config.yaml  
│   ├── kube-system-configmap-root-ca.yaml
│   ├── machine-config-server-tls-secret.yaml
│   └── openshift-config-secret-pull-secret.yaml
└── openshift
    ├── 99_cloud-creds-secret.yaml
    ├── 99_kubeadmin-password-secret.yaml
    ├── 99_openshift-cluster-api_master-machines-0.yaml
    ├── 99_openshift-cluster-api_master-machines-1.yaml
    ├── 99_openshift-cluster-api_master-machines-2.yaml
    ├── 99_openshift-cluster-api_master-user-data-secret.yaml
    ├── 99_openshift-cluster-api_worker-machineset-0.yaml
    ├── 99_openshift-cluster-api_worker-machineset-1.yaml
    ├── 99_openshift-cluster-api_worker-machineset-2.yaml
    ├── 99_openshift-cluster-api_worker-machineset-3.yaml
    ├── 99_openshift-cluster-api_worker-user-data-secret.yaml
    ├── 99_openshift-machine-api_master-control-plane-machine-set.yaml
    ├── 99_openshift-machineconfig_99-master-ssh.yaml
    ├── 99_openshift-machineconfig_99-worker-ssh.yaml
    ├── 99_role-cloud-creds-secret-reader.yaml
    └── openshift-install-manifests.yaml2 directories, 31 files
$ 

The problem scenario: "create manifests" without an existing "install-config.yaml", and then "create cluster"

$ ./openshift-install create manifests --dir test31
? SSH Public Key /home/fedora/.ssh/openshift-qe.pub
? Platform gcp
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
? Project ID OpenShift QE (openshift-qe)
? Region us-central1
? Base Domain qe.gcp.devcluster.openshift.com
? Cluster Name jiwei-0130b
? Pull Secret [? for help] *******
INFO Manifests created in: test31/manifests and test31/openshift
$ 
$ tree test31
test31
├── manifests
│   ├── cloud-controller-uid-config.yml
│   ├── cloud-provider-config.yaml
│   ├── cluster-config.yaml
│   ├── cluster-dns-02-config.yml
│   ├── cluster-infrastructure-02-config.yml
│   ├── cluster-ingress-02-config.yml
│   ├── cluster-network-01-crd.yml
│   ├── cluster-network-02-config.yml
│   ├── cluster-proxy-01-config.yaml
│   ├── cluster-scheduler-02-config.yml
│   ├── cvo-overrides.yaml
│   ├── kube-cloud-config.yaml
│   ├── kube-system-configmap-root-ca.yaml
│   ├── machine-config-server-tls-secret.yaml
│   └── openshift-config-secret-pull-secret.yaml
└── openshift
    ├── 99_openshift-cluster-api_master-machines-0.yaml
    ├── 99_openshift-cluster-api_master-machines-1.yaml
    ├── 99_openshift-cluster-api_master-machines-2.yaml
    ├── 99_openshift-cluster-api_master-user-data-secret.yaml
    ├── 99_openshift-cluster-api_worker-machineset-0.yaml
    ├── 99_openshift-cluster-api_worker-machineset-1.yaml
    ├── 99_openshift-cluster-api_worker-machineset-2.yaml
    ├── 99_openshift-cluster-api_worker-machineset-3.yaml
    ├── 99_openshift-cluster-api_worker-user-data-secret.yaml
    ├── 99_openshift-machine-api_master-control-plane-machine-set.yaml
    ├── 99_openshift-machineconfig_99-master-ssh.yaml
    └── 99_openshift-machineconfig_99-worker-ssh.yaml2 directories, 27 files
$ 
$ ./openshift-install create cluster --dir test31
INFO Consuming Common Manifests from target directory
INFO Consuming Openshift Manifests from target directory
INFO Consuming Master Machines from target directory
INFO Consuming Worker Machines from target directory
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
INFO Creating infrastructure resources...
INFO Waiting up to 20m0s (until 4:17PM) for the Kubernetes API at https://api.jiwei-0130b.qe.gcp.devcluster.openshift.com:6443...
INFO API v1.25.2+7dab57f up
INFO Waiting up to 30m0s (until 4:28PM) for bootstrapping to complete...
INFO Destroying the bootstrap resources...
INFO Waiting up to 40m0s (until 4:59PM) for the cluster at https://api.jiwei-0130b.qe.gcp.devcluster.openshift.com:6443 to initialize...
ERROR Cluster operator authentication Degraded is True with IngressStateEndpoints_MissingSubsets::OAuthClientsController_SyncError::OAuthServerDeployment_PreconditionNotFulfilled::OAuthServerRouteEndpointAccessibleController_SyncError::OAuthServerServiceEndpointAccessibleController_SyncError::OAuthServerServiceEndpointsEndpointAccessibleController_SyncError::WellKnownReadyController_SyncError: IngressStateEndpointsDegraded: No subsets found for the endpoints of oauth-server
ERROR OAuthClientsControllerDegraded: no ingress for host oauth-openshift.apps.jiwei-0130b.qe.gcp.devcluster.openshift.com in route oauth-openshift in namespace openshift-authentication
ERROR OAuthServerDeploymentDegraded: waiting for the oauth-openshift route to contain an admitted ingress: no admitted ingress for route oauth-openshift in namespace openshift-authentication
ERROR OAuthServerDeploymentDegraded:
ERROR OAuthServerRouteEndpointAccessibleControllerDegraded: route "openshift-authentication/oauth-openshift": status does not have a valid host address
ERROR OAuthServerServiceEndpointAccessibleControllerDegraded: Get "https://172.30.99.43:443/healthz": dial tcp 172.30.99.43:443: connect: connection refused
ERROR OAuthServerServiceEndpointsEndpointAccessibleControllerDegraded: oauth service endpoints are not ready
ERROR WellKnownReadyControllerDegraded: failed to get oauth metadata from openshift-config-managed/oauth-openshift ConfigMap: configmap "oauth-openshift" not found (check authentication operator, it is supposed to create this)
ERROR Cluster operator authentication Available is False with OAuthServerDeployment_PreconditionNotFulfilled::OAuthServerRouteEndpointAccessibleController_ResourceNotFound::OAuthServerServiceEndpointAccessibleController_EndpointUnavailable::OAuthServerServiceEndpointsEndpointAccessibleController_ResourceNotFound::ReadyIngressNodes_NoReadyIngressNodes::WellKnown_NotReady: OAuthServerRouteEndpointAccessibleControllerAvailable: failed to retrieve route from cache: route.route.openshift.io "oauth-openshift" not found
ERROR OAuthServerServiceEndpointAccessibleControllerAvailable: Get "https://172.30.99.43:443/healthz": dial tcp 172.30.99.43:443: connect: connection refused
ERROR OAuthServerServiceEndpointsEndpointAccessibleControllerAvailable: endpoints "oauth-openshift" not found
ERROR ReadyIngressNodesAvailable: Authentication requires functional ingress which requires at least one schedulable and ready node. Got 0 worker nodes, 3 master nodes, 0 custom target nodes (none are schedulable or ready for ingress pods).
ERROR WellKnownAvailable: The well-known endpoint is not yet available: failed to get oauth metadata from openshift-config-managed/oauth-openshift ConfigMap: configmap "oauth-openshift" not found (check authentication operator, it is supposed to create this)
INFO Cluster operator baremetal Disabled is True with UnsupportedPlatform: Nothing to do on this Platform
INFO Cluster operator cloud-controller-manager TrustedCABundleControllerControllerAvailable is True with AsExpected: Trusted CA Bundle Controller works as expected
INFO Cluster operator cloud-controller-manager TrustedCABundleControllerControllerDegraded is False with AsExpected: Trusted CA Bundle Controller works as expected
INFO Cluster operator cloud-controller-manager CloudConfigControllerAvailable is True with AsExpected: Cloud Config Controller works as expected
INFO Cluster operator cloud-controller-manager CloudConfigControllerDegraded is False with AsExpected: Cloud Config Controller works as expected
ERROR Cluster operator cloud-credential Degraded is True with CredentialsFailing: 7 of 7 credentials requests are failing to sync.
INFO Cluster operator cloud-credential Progressing is True with Reconciling: 0 of 7 credentials requests provisioned, 7 reporting errors.
ERROR Cluster operator cluster-autoscaler Degraded is True with MissingDependency: machine-api not ready
ERROR Cluster operator console Degraded is True with DefaultRouteSync_FailedAdmitDefaultRoute::RouteHealth_RouteNotAdmitted::SyncLoopRefresh_FailedIngress: DefaultRouteSyncDegraded: no ingress for host console-openshift-console.apps.jiwei-0130b.qe.gcp.devcluster.openshift.com in route console in namespace openshift-console
ERROR RouteHealthDegraded: console route is not admitted
ERROR SyncLoopRefreshDegraded: no ingress for host console-openshift-console.apps.jiwei-0130b.qe.gcp.devcluster.openshift.com in route console in namespace openshift-console
ERROR Cluster operator console Available is False with RouteHealth_RouteNotAdmitted: RouteHealthAvailable: console route is not admitted 
ERROR Cluster operator control-plane-machine-set Available is False with UnavailableReplicas: Missing 3 available replica(s)
ERROR Cluster operator control-plane-machine-set Degraded is True with NoReadyMachines: No ready control plane machines found
INFO Cluster operator etcd RecentBackup is Unknown with ControllerStarted: The etcd backup controller is starting, and will decide if recent backups are available or if a backup is required
ERROR Cluster operator image-registry Available is False with DeploymentNotFound: Available: The deployment does not exist
ERROR NodeCADaemonAvailable: The daemon set node-ca has available replicas
ERROR ImagePrunerAvailable: Pruner CronJob has been created
INFO Cluster operator image-registry Progressing is True with Error: Progressing: Unable to apply resources: unable to sync storage configuration: unable to get cluster minted credentials "openshift-image-registry/installer-cloud-credentials": secret "installer-cloud-credentials" not found
INFO NodeCADaemonProgressing: The daemon set node-ca is deployed
ERROR Cluster operator image-registry Degraded is True with Unavailable: Degraded: The deployment does not exist
ERROR Cluster operator ingress Available is False with IngressUnavailable: The "default" ingress controller reports Available=False: IngressControllerUnavailable: One or more status conditions indicate unavailable: DeploymentAvailable=False (DeploymentUnavailable: The deployment has Available status condition set to False (reason: MinimumReplicasUnavailable) with message: Deployment does not have minimum availability.), DNSReady=False (NoZones: The record isn't present in any zones.)
INFO Cluster operator ingress Progressing is True with Reconciling: ingresscontroller "default" is progressing: IngressControllerProgressing: One or more status conditions indicate progressing: DeploymentRollingOut=True (DeploymentRollingOut: Waiting for router deployment rollout to finish: 0 of 2 updated replica(s) are available...
INFO ).
INFO Not all ingress controllers are available.
ERROR Cluster operator ingress Degraded is True with IngressDegraded: The "default" ingress controller reports Degraded=True: DegradedConditions: One or more other status conditions indicate a degraded state: DeploymentAvailable=False (DeploymentUnavailable: The deployment has Available status condition set to False (reason: MinimumReplicasUnavailable) with message: Deployment does not have minimum availability.), DeploymentReplicasMinAvailable=False (DeploymentMinimumReplicasNotMet: 0/2 of replicas are available, max unavailable is 1: Some pods are not scheduled: Pod "router-default-c68b5786c-prk7x" cannot be scheduled: 0/3 nodes are available: 3 node(s) didn't match Pod's node affinity/selector, 3 node(s) had untolerated taint {node-role.kubernetes.io/master: }. preemption: 0/3 nodes are available: 3 Preemption is not helpful for scheduling. Pod "router-default-c68b5786c-ssrv7" cannot be scheduled: 0/3 nodes are available: 3 node(s) didn't match Pod's node affinity/selector, 3 node(s) had untolerated taint {node-role.kubernetes.io/master: }. preemption: 0/3 nodes are available: 3 Preemption is not helpful for scheduling. Make sure you have sufficient worker nodes.), DNSReady=False (NoZones: The record isn't present in any zones.), CanaryChecksSucceeding=Unknown (CanaryRouteNotAdmitted: Canary route is not admitted by the default ingress controller)
INFO Cluster operator ingress EvaluationConditionsDetected is False with AsExpected:
INFO Cluster operator insights ClusterTransferAvailable is False with NoClusterTransfer: no available cluster transfer
INFO Cluster operator insights Disabled is False with AsExpected:
INFO Cluster operator insights SCAAvailable is True with Updated: SCA certs successfully updated in the etc-pki-entitlement secret
ERROR Cluster operator kube-controller-manager Degraded is True with GarbageCollector_Error: GarbageCollectorDegraded: error fetching rules: Get "https://thanos-querier.openshift-monitoring.svc:9091/api/v1/rules": dial tcp: lookup thanos-querier.openshift-monitoring.svc on 172.30.0.10:53: no such host  
INFO Cluster operator machine-api Progressing is True with SyncingResources: Progressing towards operator: 4.13.0-0.nightly-2023-01-27-165107
ERROR Cluster operator machine-api Degraded is True with SyncingFailed: Failed when progressing towards operator: 4.13.0-0.nightly-2023-01-27-165107 because minimum worker replica count (2) not yet met: current running replicas 0, waiting for [jiwei-0130b-25fcm-worker-a-j6t42 jiwei-0130b-25fcm-worker-b-dpw9b jiwei-0130b-25fcm-worker-c-9cdms]
ERROR Cluster operator machine-api Available is False with Initializing: Operator is initializing
ERROR Cluster operator monitoring Available is False with UpdatingPrometheusOperatorFailed: reconciling Prometheus Operator Admission Webhook Deployment failed: updating Deployment object failed: waiting for DeploymentRollout of openshift-monitoring/prometheus-operator-admission-webhook: got 2 unavailable replicas
ERROR Cluster operator monitoring Degraded is True with UpdatingPrometheusOperatorFailed: reconciling Prometheus Operator Admission Webhook Deployment failed: updating Deployment object failed: waiting for DeploymentRollout of openshift-monitoring/prometheus-operator-admission-webhook: got 2 unavailable replicas
INFO Cluster operator monitoring Progressing is True with RollOutInProgress: Rolling out the stack.
INFO Cluster operator network ManagementStateDegraded is False with :
INFO Cluster operator network Progressing is True with Deploying: Deployment "/openshift-network-diagnostics/network-check-source" is waiting for other operators to become ready
INFO Deployment "/openshift-cloud-network-config-controller/cloud-network-config-controller" is waiting for other operators to become ready
INFO Cluster operator storage Progressing is True with GCPPDCSIDriverOperatorCR_GCPPDDriverControllerServiceController_Deploying: GCPPDCSIDriverOperatorCRProgressing: GCPPDDriverControllerServiceControllerProgressing: Waiting for Deployment to deploy pods
ERROR Cluster operator storage Available is False with GCPPDCSIDriverOperatorCR_GCPPDDriverControllerServiceController_Deploying: GCPPDCSIDriverOperatorCRAvailable: GCPPDDriverControllerServiceControllerAvailable: Waiting for Deployment
ERROR Cluster initialization failed because one or more operators are not functioning properly.
ERROR The cluster should be accessible for troubleshooting as detailed in the documentation linked below,
ERROR https://docs.openshift.com/container-platform/latest/support/troubleshooting/troubleshooting-installations.html
ERROR The 'wait-for install-complete' subcommand can then be used to continue the installation
ERROR failed to initialize the cluster: Cluster operators authentication, console, control-plane-machine-set, image-registry, ingress, machine-api, monitoring, storage are not available
$ export KUBECONFIG=test31/auth/kubeconfig 
$ ./oc get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version             False       True          74m     Unable to apply 4.13.0-0.nightly-2023-01-27-165107: some cluster operators are not available
$ ./oc get nodes
NAME                                                 STATUS   ROLES                  AGE   VERSION
jiwei-0130b-25fcm-master-0.c.openshift-qe.internal   Ready    control-plane,master   69m   v1.25.2+7dab57f
jiwei-0130b-25fcm-master-1.c.openshift-qe.internal   Ready    control-plane,master   69m   v1.25.2+7dab57f
jiwei-0130b-25fcm-master-2.c.openshift-qe.internal   Ready    control-plane,master   69m   v1.25.2+7dab57f
$ ./oc get machines -n openshift-machine-api
NAME                               PHASE   TYPE   REGION   ZONE   AGE
jiwei-0130b-25fcm-master-0                                        73m
jiwei-0130b-25fcm-master-1                                        73m
jiwei-0130b-25fcm-master-2                                        73m
jiwei-0130b-25fcm-worker-a-j6t42                                  65m
jiwei-0130b-25fcm-worker-b-dpw9b                                  65m
jiwei-0130b-25fcm-worker-c-9cdms                                  65m
$ ./oc get controlplanemachinesets -n openshift-machine-api
NAME      DESIRED   CURRENT   READY   UPDATED   UNAVAILABLE   STATE    AGE
cluster   3         3                           3             Active   74m
$ 

Please see the attached ".openshift_install.log", install-config.yaml snippet, and more "oc" commands outputs.

 

 

 

 

 

This is a clone of issue OCPBUGS-10213. The following is the description of the original issue:

This is a clone of issue OCPBUGS-8468. The following is the description of the original issue:

Description of problem:

RHCOS is being published to new AWS regions (https://github.com/openshift/installer/pull/6861) but aws-sdk-go need to be bumped to recognize those regions

Version-Release number of selected component (if applicable):

master/4.14

How reproducible:

always

Steps to Reproduce:

1. openshift-install create install-config
2. Try to select ap-south-2 as a region
3.

Actual results:

New regions are not found. New regions are: ap-south-2, ap-southeast-4, eu-central-2, eu-south-2, me-central-1.

Expected results:

Installer supports and displays the new regions in the Survey

Additional info:

See https://github.com/openshift/installer/blob/master/pkg/asset/installconfig/aws/regions.go#L13-L23

 

Grafana has been removed in 4.11 and we can safely remove any logic in CMO that deals with Grafana (except dashboards since they are used by OCP console).

Another point to clarify is to communicate to ProdSec and ART that Grafana isn't part of OCP anymore.

This is a clone of issue OCPBUGS-8691. The following is the description of the original issue:

Description of problem:

In hypershift context:
Operands managed by Operators running in the hosted control plane namespace in the management cluster do not honour affinity opinions https://hypershift-docs.netlify.app/how-to/distribute-hosted-cluster-workloads/
https://github.com/openshift/hypershift/blob/main/support/config/deployment.go#L263-L265

These operands running management side should honour the same affinity, tolerations, node selector and priority rules than the operator.
This could be done by looking at the operator deployment itself or at the HCP resource.

aws-ebs-csi-driver-controller
aws-ebs-csi-driver-operator
csi-snapshot-controller
csi-snapshot-webhook


Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Create a hypershift cluster.
2. Check affinity rules and node selector of the operands above.
3.

Actual results:

Operands missing affinity rules and node selecto

Expected results:

Operands have same affinity rules and node selector than the operator

Additional info:

 

Description of problem:

Installation fails on AWS because the installer manifests include an invalid ingresses.config.openshift.io/cluster manifest.

Version-Release number of selected component (if applicable):

4.12.

How reproducible:

Seems to be a consistent failure.

Steps to Reproduce:

1. Install a cluster on AWS without specifying lbType in the install-config.

Actual results:

The cluster bootstrap fails with the following error message:

"cluster-ingress-02-config.yml": failed to create ingresses.v1.config.openshift.io/cluster -n : Ingress.config.openshift.io "cluster" is invalid: spec.loadBalancer.platform.aws.type: Required value
 

Expected results:

Cluster bootstrap should succeed.

Additional info:

https://github.com/openshift/installer/pull/6478 introduced the problematic logic that sets spec.loadBalancer.platform.aws without setting spec.loadBalancer.platform.aws.type.

 

This is a clone of issue OCPBUGS-4997. The following is the description of the original issue:

The fix for OCPBUGS-3382 ensures that we pass the proxy settings from the install-config through to the final cluster. However, nothing in the agent ISO itself uses proxy settings (at least until bootstrapping starts.

It is probably less likely for the agent-based installer that proxies will be needed than e.g. for assisted (where agents running on-prem need to call back to assisted-service in the cloud), but we should be consistent about using any proxy config provided. There may certainly be cases where the registry is only reachable via a proxy.

This can be easily set system-wide by configuring default environment variables in the systemd config. An example (from the bootstrap ignition) is: https://github.com/openshift/installer/blob/master/data/data/bootstrap/files/etc/systemd/system.conf.d/10-default-env.conf.template
Note that current the agent service explicitly overrides these environment variables to be empty, so that will have to be cleared.

As a developer, I would like to remove the random terraform provider because it is essentially unnecessary and would improve our build process.

 

The random Terraform provider is used in Azure & Azure Stack to create a random string. This could easily be done in go code and passed in as a variable. 

Removing an extra provider would decrease our build time and improve our build stability, which is often failing due to timeouts. 

 

The random string is used here in Azure (and similarly in Azure Stack):

https://github.com/openshift/installer/blob/master/data/data/azure/vnet/main.tf#L23-L27

 

One approach would be to generate the string in tfvars and pass it in as a terraform variable.

This bug is a backport clone of [Bugzilla Bug 2092811](https://bugzilla.redhat.com/show_bug.cgi?id=2092811). The following is the description of the original bug:

+++ This bug was initially created as a clone of Bug #1926943 +++

The customer is facing this issue:

I0530 05:19:11.481797 1 vsphere_check.go:220] CheckDefaultDatastore failed: defaultDatastore "FI-HML-DC2-CONT-1" in vSphere configuration: datastore FI-HML-DC2-CONT-1: datastore name is too long: escaped volume path "var-lib-kubelet-plugins-kubernetes.io-vsphere\\x2dvolume-mounts\\x5bFI\\x2dHML\\x2dDC2\\x2dCONT\\x2d1\\x5d\\x2000000000\\x2d0000\\x2d0000\\x2d0000\\x2d000000000000-fi\\x2dhmy\\x2dsas\\x2dprod\\x2dnp868\\x2d\\x2dpvc\\x2d00000000\\x2d0000\\x2d0000\\x2d0000
x2d000000000000.vmdk" must be under 255 characters, got 255

Looks like the bug has resurfaced.

This is a clone of issue OCPBUGS-5136. The following is the description of the original issue:

Description of problem:

Provisioning on ilo4-virtualmedia BMC driver fails with error: "Creating vfat image failed: Unexpected error while running command"

Version-Release number of selected component (if applicable):

4.13 (but will apply to older OpenShift versions too)

How reproducible:

Always

Steps to Reproduce:

1.configure some nodes with ilo4-virtualmedia://
2.attempt provisioning
3.

Actual results:

provisioning fails with error similar to  Failed to inspect hardware. Reason: unable to start inspection: Validation of image href https://10.1.235.67:6183/ilo/boot-9db13f93-861a-4d27-b20d-2c228559faa2.iso failed, reason: HTTPSConnectionPool(host='10.1.235.67', port=6183): Max retries exceeded with url: /ilo/boot-9db13f93-861a-4d27-b20d-2c228559faa2.iso (Caused by SSLError(SSLCertVerificationError(1, '[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: self-signed certificate in certificate chain (_ssl.c:1129)')))

Expected results:

Provisioning succeeds

Additional info:

This happens after a preceding issue with missing iLO driver configuration has been fixed (https://github.com/metal3-io/ironic-image/pull/402)

Description of problem:

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

This a bug record to pin down dependencies version in CMO release 4.12 after the release-4.12 branch was detached from master branch.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

N/A

Steps to Reproduce:

N/A

Actual results:

N/A

Expected results:

N/A

Additional info:

None.

Description of problem:

Pod in the openshift-marketplace cause PodSecurityViolation alerts in vanilla OpenShift cluster

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2023-01-04-203333

How reproducible:

100%

Steps to Reproduce:

1. install a freshly new cluster
2. check the alerts in the console

Actual results:

PodSecurityViolation alert is present

Expected results:

No alerts

Additional info:

I'll provide a filtered version of the audit logs containing the violations

This is a clone of issue OCPBUGS-7719. The following is the description of the original issue:

Description of problem:

An update from 4.13.0-ec.2 to 4.13.0-ec.3 stuck on:

$ oc get clusteroperator machine-config
NAME             VERSION       AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
machine-config   4.13.0-ec.2   True        True          True       30h     Unable to apply 4.13.0-ec.3: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool worker is not ready, retrying. Status: (pool degraded: true total: 105, ready 105, updated: 105, unavailable: 0)]

The worker MachineConfigPool status included:

Unable to find source-code formatter for language: node. Available languages are: actionscript, ada, applescript, bash, c, c#, c++, cpp, css, erlang, go, groovy, haskell, html, java, javascript, js, json, lua, none, nyan, objc, perl, php, python, r, rainbow, ruby, scala, sh, sql, swift, visualbasic, xml, yaml
      type: NodeDegraded
    - lastTransitionTime: "2023-02-16T14:29:21Z"
      message: 'Failed to render configuration for pool worker: Ignoring MC 99-worker-generated-containerruntime
        generated by older version 8276d9c1f574481043d3661a1ace1f36cd8c3b62 (my version:
        c06601510c0917a48912cc2dda095d8414cc5182)'

Version-Release number of selected component (if applicable):

4.13.0-ec.3. The behavior was apparently introduced as part of OCPBUGS-6018, which has been backported, so the following update targets are expected to be vulnerable: 4.10.52+, 4.11.26+, 4.12.2+, and 4.13.0-ec.3.

How reproducible:

100%, when updating into a vulnerable release, if you happen to have leaked MachineConfig.

Steps to Reproduce:

1. 4.12.0-ec.1 dropped cleanUpDuplicatedMC. Run a later release, like 4.13.0-ec.2.
2. Create more than one KubeletConfig or ContainerRuntimeConfig targeting the worker pool (or any pool other than master). The number of clusters who have had redundant configuration objects like this is expected to be small.
3. (Optionally?) delete the extra KubeletConfig and ContainerRuntimeConfig.
4. Update to 4.13.0-ec.3.

Actual results:

Update sticks on the machine-config ClusterOperator, as described above.

Expected results:

Update completes without issues.

Description of problem:

Create network LoadBalancer service, but always get Connection time out when accessing the LB

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-27-135134

How reproducible:

100%

Steps to Reproduce:

1. create custom ingresscontroller that using Network LB service

$ Domain="nlb.$(oc get dns.config cluster -o=jsonpath='{.spec.baseDomain}')"
$ oc create -f - << EOF
kind: IngressController
apiVersion: operator.openshift.io/v1
metadata:
  name: nlb
  namespace: openshift-ingress-operator
spec:
  domain: ${Domain}
  replicas: 3
  endpointPublishingStrategy:
    loadBalancer:
      providerParameters:
        aws:
          type: NLB
        type: AWS
      scope: External
    type: LoadBalancerService
EOF


2. wait for the ingress NLB service is ready.

$ oc -n openshift-ingress get svc/router-nlb
NAME         TYPE           CLUSTER-IP      EXTERNAL-IP                                                                     PORT(S)                      AGE
router-nlb   LoadBalancer   172.30.75.134   a765a5eb408aa4a68988e35b72672379-78a76c339ded64fa.elb.us-east-2.amazonaws.com   80:31833/TCP,443:32499/TCP   117s


3. curl the network LB

$ curl a765a5eb408aa4a68988e35b72672379-78a76c339ded64fa.elb.us-east-2.amazonaws.com -I
<hang>

Actual results:

Connection time out

Expected results:

curl should return 503

Additional info:

the NLB service has the annotation:
  service.beta.kubernetes.io/aws-load-balancer-type: nlb

 

This is a clone of issue OCPBUGS-4305. The following is the description of the original issue:

Description of problem:

Please add an option to DISABLE debug in ironic-api. Presently it is enabled by default and there is no way to disable it or reduce log level

https://github.com/metal3-io/ironic-image/blob/main/ironic-config/ironic.conf.j2#L3


Version-Release number of selected component (if applicable): none

How reproducible: Every time

Steps to Reproduce:

Please check source code here: https://github.com/metal3-io/ironic-image/blob/main/ironic-config/ironic.conf.j2#L3

It is enabled by default and there is no way to disable it or reduce log level

Actual results:

Please check Case: 03371411, the log file grew to 409 GB

Expected results: Need a way to disable debug

Additional info: Case 03371411. A cluster must gather and log file can be found in the case.

Description of problem:

E2E CI feature files are failing as Mocha version couldn't be determined 

Version-Release number of selected component (if applicable):

 

How reproducible:

CI Search : https://search.ci.openshift.org/?search=Couldn%27t+determine+Mocha+version&maxAge=336h&context=1&type=bug%2Bjunit&name=pull-ci-openshift-console-operator-master-e2e-aws-console&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

Steps to Reproduce:

1.
2.
3.

Actual results:

E2E tests failing with `Couldn't determine Mocha version` error

Expected results:

E2E tests should pass without any failures

Additional info:

 

Not all information provided in the install-config gets passed through to assisted-service.

An example is that platform settings other than the VIPs are ignored. So are the "capabilities". There may be others - we need to do a thorough audit.

If the user supplies data that we then ignore, we should log a warning. However, we must not return an error, because this may prevent people using their existing install-configs with the agent install method.

Description of problem:

This bug is a clone of https://bugzilla.redhat.com/show_bug.cgi?id=2109140 on odf-console side.
Corresponding PR needed to be merged in console as well.
Please, verify this Jira console's bug and https://bugzilla.redhat.com/show_bug.cgi?id=2109140 simultaneous. Steps are exactly same, no difference.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-3032. The following is the description of the original issue:

If installation fails at an early stage (e.g. pulling release images, configuring hosts, waiting for agents to come up) there is no indication that anything has gone wrong, and the installer binary may not even be able to connect.
We should at least display what is happening on the console so that users have some avenue to figure out for themselves what is going on.

Description of problem:

Since openenshift/cluster-ingress-operator#817 merged, the e2e-aws-operator CI job has been failing for multiple PRs in the cluster-ingress-operator repository.  In particular, the TestScopeChange test has been consistently failing. Example failures:

The operator is repeatedly logging errors like the following in those failing CI jobs:

ERROR    operator.dns_controller    controller/controller.go:121    failed to delete dnsrecord; will retry    \{"dnsrecord": {"metadata":{"name":"scope-wildcard","namespace":"openshift-ingress-operator","uid":"2cb9936f-d6a0-4377-b3ed-c5167c5e9e4d","resourceVersion":"42217","generation":2,"creationTimestamp":"2022-10-13T16:19:23Z","deletionTimestamp":"2022-10-13T16:20:27Z","deletionGracePeriodSeconds":0,"labels":{"ingresscontroller.operator.openshift.io/owning-ingresscontroller":"scope"},"ownerReferences":[\{"apiVersion":"operator.openshift.io/v1","kind":"IngressController","name":"scope","uid":"713ac1c5-451b-42d1-89fd-c3910eb80fe3","controller":true,"blockOwnerDeletion":true}],"finalizers":["operator.openshift.io/ingress-dns"],"managedFields":[\{"manager":"ingress-operator","operation":"Update","apiVersion":"ingress.operator.openshift.io/v1","time":"2022-10-13T16:19:23Z","fieldsType":"FieldsV1","fieldsV1":{"f:metadata":{"f:finalizers":{".":{},"v:\"operator.openshift.io/ingress-dns\"":{}},"f:labels":\{".":{},"f:ingresscontroller.operator.openshift.io/owning-ingresscontroller":{}},"f:ownerReferences":\{".":{},"k:\{\"uid\":\"713ac1c5-451b-42d1-89fd-c3910eb80fe3\"}":{}}},"f:spec":\{".":{},"f:dnsManagementPolicy":{},"f:dnsName":{},"f:recordTTL":{},"f:recordType":{},"f:targets":{}}}},\{"manager":"ingress-operator","operation":"Update","apiVersion":"ingress.operator.openshift.io/v1","time":"2022-10-13T16:19:24Z","fieldsType":"FieldsV1","fieldsV1":{"f:status":{".":{},"f:observedGeneration":{},"f:zones":{}}},"subresource":"status"}]},"spec":\{"dnsName":"*.scope.ci-op-x1j7dsgt-43abb.origin-ci-int-aws.dev.rhcloud.com.","targets":["af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com"],"recordType":"CNAME","recordTTL":30,"dnsManagementPolicy":"Managed"},"status":\{"zones":[{"dnsZone":{"tags":{"Name":"ci-op-x1j7dsgt-43abb-45zhd-int","kubernetes.io/cluster/ci-op-x1j7dsgt-43abb-45zhd":"owned"}},"conditions":[\{"type":"Published","status":"True","lastTransitionTime":"2022-10-13T16:19:23Z","reason":"ProviderSuccess","message":"The DNS provider succeeded in ensuring the record"}]},\{"dnsZone":{"id":"Z2GYOLTZHS5VK"},"conditions":[\{"type":"Published","status":"True","lastTransitionTime":"2022-10-13T16:19:24Z","reason":"ProviderSuccess","message":"The DNS provider succeeded in ensuring the record"}]}],"observedGeneration":1}}, "error": "failed to get hosted zone for load balancer target \"af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com\": couldn't find hosted zone ID of ELB af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com", "errorCauses": [\{"error": "failed to get hosted zone for load balancer target \"af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com\": couldn't find hosted zone ID of ELB af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com"}, \{"error": "failed to get hosted zone for load balancer target \"af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com\": couldn't find hosted zone ID of ELB af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com"}]}}}

The scope-wildcard dnsrecord is created for the TestScopeChange test.

Using search.ci, it seems that the failures occurred many times on #817 before it merged and then started occurring for the other PRs after #817 merged.

I filed a PR, openshift/cluster-ingress-operator#838, that reverts #817. I have run the e2e-aws-operator CI job on this PR twice. While the job has failed both times, the TestScopeChange test did not fail either time.

At this point, we have strong evidence that #817 is causing TestScopeChange to fail.

Grant Spence did some testing and determined that there is some interaction between TestAllowedSourceRangesStatus and TestScopeChange. It may suffice to serialize some tests (TestScopeChanged is currently a parallel test, as is TestAllowedSourceRangesStatus and two other tests that #817 adds).

If the problem cannot be resolved by serializing tests, it may be necessary to revert #817 to unblock CI.

Note that this issue is blocking NE-942, NE-1072, and NE-682, as well as any bugfix PRs for the master branch in openshift/cluster-ingress-operator.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Consistently.

Steps to Reproduce:

1. Run CI on a PR against the master branch of cluster-ingress-operator.

Actual results:

The TestScopeChange test fails as described.

Expected results:

TestScopeChange should not fail.

 

 

Description of problem:

See: https://issues.redhat.com/browse/CPSYN-143

tldr:  Based on the previous direction that 4.12 was going to enforce PSA restricted by default, OLM had to make a few changes because the way we run catalog pods (and we have to run them that way because of how the opm binary worked) was incompatible w/ running restricted.

1) We set openshift-marketplace to enforce restricted (this was our choice, we didn't have to do it, but we did)
2) we updated the opm binary so catalog images using a newer opm binary don't have to run privileged
3) we added a field to catalogsource that allows you to choose whether to run the pod privileged(legacy mode) or restricted.  The default is restricted.  We made that the default so that users running their own catalogs in their own NSes (which would be default PSA enforcing) would be able to be successful w/o needing their NS upgraded to privileged.

Unfortunately this means:
1) legacy catalog images(i.e. using older opm binaries) won't run on 4.12 by default (the catalogsource needs to be modified to specify legacy mode.
2) legacy catalog images cannot be run in the openshift-marketplace NS since that NS does not allow privileged pods.  This means legacy catalogs can't contribute to the global catalog (since catalogs must be in that NS to be in the global catalog).

Before 4.12 ships we need to:
1) remove the PSA restricted label on the openshift-marketplace NS
2) change the catalogsource securitycontextconfig mode default to use "legacy" as the default, not restricted.

This gives catalog authors another release to update to using a newer opm binary that can run restricted, or get their NSes explicitly labeled as privileged (4.12 will not enforce restricted, so in 4.12 using the legacy mode will continue to work)

In 4.13 we will need to revisit what we want the default to be, since at that point catalogs will start breaking if they try to run in legacy mode in most NSes.


Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


Description of problem:

[OVN][OSP] After reboot egress node, egress IP cannot be applied anymore.

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-11-07-181244

How reproducible:

Frequently happened in automation. But didn't reproduce it in manual.

Steps to Reproduce:

1. Label one node as egress node

2.
Config one egressIP object
STEP: Check  one EgressIP assigned in the object.

Nov  8 15:28:23.591: INFO: egressIPStatus: [{"egressIP":"192.168.54.72","node":"huirwang-1108c-pg2mt-worker-0-2fn6q"}]

3.
Reboot the node, wait for the node ready.


Actual results:

EgressIP cannot be applied anymore. Waited more than 1 hour.
 oc get egressip
NAME             EGRESSIPS       ASSIGNED NODE   ASSIGNED EGRESSIPS
egressip-47031   192.168.54.72    

Expected results:

The egressIP should be applied correctly.

Additional info:


Some logs
E1108 07:29:41.849149       1 egressip.go:1635] No assignable nodes found for EgressIP: egressip-47031 and requested IPs: [192.168.54.72]
I1108 07:29:41.849288       1 event.go:285] Event(v1.ObjectReference{Kind:"EgressIP", Namespace:"", Name:"egressip-47031", UID:"", APIVersion:"", ResourceVersion:"", FieldPath:""}): type: 'Warning' reason: 'NoMatchingNodeFound' no assignable nodes for EgressIP: egressip-47031, please tag at least one node with label: k8s.ovn.org/egress-assignable


W1108 07:33:37.401149       1 egressip_healthcheck.go:162] Could not connect to huirwang-1108c-pg2mt-worker-0-2fn6q (10.131.0.2:9107): context deadline exceeded
I1108 07:33:37.401348       1 master.go:1364] Adding or Updating Node "huirwang-1108c-pg2mt-worker-0-2fn6q"
I1108 07:33:37.437465       1 egressip_healthcheck.go:168] Connected to huirwang-1108c-pg2mt-worker-0-2fn6q (10.131.0.2:9107)

After this log, seems like no logs related to "192.168.54.72" happened.

Description of problem:

The IPI installation in some regions got bootstrap failure, and without any node available/ready.

Version-Release number of selected component (if applicable):

12-22 16:22:27.970  ./openshift-install 4.12.0-0.nightly-2022-12-21-202045
12-22 16:22:27.970  built from commit 3f9c38a5717c638f952df82349c45c7d6964fcd9
12-22 16:22:27.970  release image registry.ci.openshift.org/ocp/release@sha256:2d910488f25e2638b6d61cda2fb2ca5de06eee5882c0b77e6ed08aa7fe680270
12-22 16:22:27.971  release architecture amd64

How reproducible:

Always

Steps to Reproduce:

1. try the IPI installation in the problem regions (so far tried and failed with ap-southeast-2, ap-south-1, eu-west-1, ap-southeast-6, ap-southeast-3, ap-southeast-5, eu-central-1, cn-shanghai, cn-hangzhou and cn-beijing) 

Actual results:

Bootstrap failed to complete

Expected results:

Installation in those regions should succeed.

Additional info:

FYI the QE flexy-install job: https://mastern-jenkins-csb-openshift-qe.apps.ocp-c1.prod.psi.redhat.com/job/ocp-common/job/Flexy-install/166672/

No any node available/ready, and no any operator available.
$ oc get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version             False       True          30m     Unable to apply 4.12.0-0.nightly-2022-12-21-202045: an unknown error has occurred: MultipleErrors
$ oc get nodes
No resources found
$ oc get machines -n openshift-machine-api -o wide
NAME                         PHASE   TYPE   REGION   ZONE   AGE   NODE   PROVIDERID   STATE
jiwei-1222f-v729x-master-0                                  30m                       
jiwei-1222f-v729x-master-1                                  30m                       
jiwei-1222f-v729x-master-2                                  30m                       
$ oc get co
NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication
baremetal
cloud-controller-manager                                                                          
cloud-credential                                                                                  
cluster-autoscaler                                                                                
config-operator                                                                                   
console                                                                                           
control-plane-machine-set                                                                         
csi-snapshot-controller                                                                           
dns                                                                                               
etcd                                                                                              
image-registry                                                                                    
ingress                                                                                           
insights                                                                                          
kube-apiserver                                                                                    
kube-controller-manager                                                                           
kube-scheduler                                                                                    
kube-storage-version-migrator                                                                     
machine-api                                                                                       
machine-approver                                                                                  
machine-config                                                                                    
marketplace                                                                                       
monitoring                                                                                        
network                                                                                           
node-tuning                                                                                       
openshift-apiserver                                                                               
openshift-controller-manager                                                                      
openshift-samples                                                                                 
operator-lifecycle-manager                                                                        
operator-lifecycle-manager-catalog                                                                
operator-lifecycle-manager-packageserver
service-ca
storage
$

Mater nodes don't run for example kubelet and crio services.
[core@jiwei-1222f-v729x-master-0 ~]$ sudo crictl ps
FATA[0000] unable to determine runtime API version: rpc error: code = Unavailable desc = connection error: desc = "transport: Error while dialing dial unix /var/run/crio/crio.sock: connect: no such file or directory" 
[core@jiwei-1222f-v729x-master-0 ~]$ 

The machine-config-daemon firstboot tells "failed to update OS".
[jiwei@jiwei log-bundle-20221222085846]$ grep -Ei 'error|failed' control-plane/10.0.187.123/journals/journal.log 
Dec 22 16:24:16 localhost kernel: GPT: Use GNU Parted to correct GPT errors.
Dec 22 16:24:16 localhost kernel: GPT: Use GNU Parted to correct GPT errors.
Dec 22 16:24:18 localhost ignition[867]: failed to fetch config: resource requires networking
Dec 22 16:24:18 localhost ignition[891]: GET error: Get "http://100.100.100.200/latest/user-data": dial tcp 100.100.100.200:80: connect: network is unreachable
Dec 22 16:24:18 localhost ignition[891]: GET error: Get "http://100.100.100.200/latest/user-data": dial tcp 100.100.100.200:80: connect: network is unreachable
Dec 22 16:24:19 localhost.localdomain NetworkManager[919]: <info>  [1671726259.0329] hostname: hostname: hostnamed not used as proxy creation failed with: Could not connect: No such file or directory
Dec 22 16:24:19 localhost.localdomain NetworkManager[919]: <warn>  [1671726259.0464] sleep-monitor-sd: failed to acquire D-Bus proxy: Could not connect: No such file or directory
Dec 22 16:24:19 localhost.localdomain ignition[891]: GET error: Get "https://api-int.jiwei-1222f.alicloud-qe.devcluster.openshift.com:22623/config/master": dial tcp 10.0.187.120:22623: connect: connection refused
...repeated logs omitted...
Dec 22 16:27:46 jiwei-1222f-v729x-master-0 ovs-ctl[1888]: 2022-12-22T16:27:46Z|00001|dns_resolve|WARN|Failed to read /etc/resolv.conf: No such file or directory
Dec 22 16:27:46 jiwei-1222f-v729x-master-0 ovs-vswitchd[1888]: ovs|00001|dns_resolve|WARN|Failed to read /etc/resolv.conf: No such file or directory
Dec 22 16:27:46 jiwei-1222f-v729x-master-0 dbus-daemon[1669]: [system] Activation via systemd failed for unit 'dbus-org.freedesktop.resolve1.service': Unit dbus-org.freedesktop.resolve1.service not found.
Dec 22 16:27:46 jiwei-1222f-v729x-master-0 nm-dispatcher[1924]: Error: Device '' not found.
Dec 22 16:27:46 jiwei-1222f-v729x-master-0 nm-dispatcher[1937]: Error: Device '' not found.
Dec 22 16:27:46 jiwei-1222f-v729x-master-0 nm-dispatcher[2037]: Error: Device '' not found.
Dec 22 08:35:32 jiwei-1222f-v729x-master-0 machine-config-daemon[2181]: Warning: failed, retrying in 1s ... (1/2)I1222 08:35:32.477770    2181 run.go:19] Running: nice -- ionice -c 3 oc image extract --path /:/run/mco-extensions/os-extensions-content-910221290 --registry-config /var/lib/kubelet/config.json quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:259d8c6b9ec714d53f0275db9f2962769f703d4d395afb9d902e22cfe96021b0
Dec 22 08:56:06 jiwei-1222f-v729x-master-0 rpm-ostree[2288]: Txn Rebase on /org/projectatomic/rpmostree1/rhcos failed: remote error: Get "https://quay.io/v2/openshift-release-dev/ocp-v4.0-art-dev/blobs/sha256:27f262e70d98996165748f4ab50248671d4a4f97eb67465cd46e1de2d6bd24d0": net/http: TLS handshake timeout
Dec 22 08:56:06 jiwei-1222f-v729x-master-0 machine-config-daemon[2181]: W1222 08:56:06.785425    2181 firstboot_complete_machineconfig.go:46] error: failed to update OS to quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:411e6e3be017538859cfbd7b5cd57fc87e5fee58f15df19ed3ec11044ebca511 : error running rpm-ostree rebase --experimental ostree-unverified-registry:quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:411e6e3be017538859cfbd7b5cd57fc87e5fee58f15df19ed3ec11044ebca511: Warning: The unit file, source configuration file or drop-ins of rpm-ostreed.service changed on disk. Run 'systemctl daemon-reload' to reload units.
Dec 22 08:56:06 jiwei-1222f-v729x-master-0 machine-config-daemon[2181]: error: remote error: Get "https://quay.io/v2/openshift-release-dev/ocp-v4.0-art-dev/blobs/sha256:27f262e70d98996165748f4ab50248671d4a4f97eb67465cd46e1de2d6bd24d0": net/http: TLS handshake timeout
Dec 22 08:57:31 jiwei-1222f-v729x-master-0 machine-config-daemon[2181]: Warning: failed, retrying in 1s ... (1/2)I1222 08:57:31.244684    2181 run.go:19] Running: nice -- ionice -c 3 oc image extract --path /:/run/mco-extensions/os-extensions-content-4021566291 --registry-config /var/lib/kubelet/config.json quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:259d8c6b9ec714d53f0275db9f2962769f703d4d395afb9d902e22cfe96021b0
Dec 22 08:59:20 jiwei-1222f-v729x-master-0 systemd[2353]: /usr/lib/systemd/user/podman-kube@.service:10: Failed to parse service restart specifier, ignoring: never
Dec 22 08:59:21 jiwei-1222f-v729x-master-0 podman[2437]: Error: open default: no such file or directory
Dec 22 08:59:21 jiwei-1222f-v729x-master-0 podman[2450]: Error: failed to start API service: accept unixgram @00026: accept4: operation not supported
Dec 22 08:59:21 jiwei-1222f-v729x-master-0 systemd[2353]: podman-kube@default.service: Failed with result 'exit-code'.
Dec 22 08:59:21 jiwei-1222f-v729x-master-0 systemd[2353]: Failed to start A template for running K8s workloads via podman-play-kube.
Dec 22 08:59:21 jiwei-1222f-v729x-master-0 systemd[2353]: podman.service: Failed with result 'exit-code'.
[jiwei@jiwei log-bundle-20221222085846]$ 

 

Description of problem:

Restore size in snapshot output is not the same size of pvc request size 

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Create IBM cluster. 
    Flexy template: aos-4_12/ipi-on-ibmcloud/versioned-installer-  
                    private_cluster-ovn-fips-ci
    Payload: 4.12.0-0.nightly-2022-11-29-131548 
2. Create sc, pvc, dep
3. Create volumesnapshot from default volumesnapshotclass. 
4. Check the volumesnapshot output restore size 

sc_pvc_dep.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: mysc
parameters:
profile: 10iops-tier
provisioner: vpc.block.csi.ibm.io
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: mypvc-csi
namespace: testropatil
spec:
accessModes:

  • ReadWriteOnce
    resources:
    requests:
    storage: 26Gi
    storageClassName: mysc
    volumeMode: Filesystem

    apiVersion: apps/v1
    kind: Deployment
    metadata:
    name: mydep
    namespace: testropatil
    spec:
    replicas: 1
    selector:
    matchLabels:
    app: myapp-54mtso67
    template:
    metadata:
    labels:
    app: myapp-54mtso67
    spec:
    containers:
  • image: quay.io/openshifttest/hello-openshift@sha256:56c354e7885051b6bb4263f9faa58b2c292d44790599b7dde0e49e7c466cf339
    name: mydep
    ports:
  • containerPort: 80
    volumeMounts:
  • mountPath: "/mnt/storage"
    name: local
    volumes:
  • name: local
    persistentVolumeClaim:
    claimName: mypvc-csi
     
    vss.yaml
    apiVersion: snapshot.storage.k8s.io/v1
    kind: VolumeSnapshot
    metadata:
    name: my-snapshot-new
    namespace: testropatil
    spec:
    source:
    persistentVolumeClaimName: mypvc-csi
    volumeSnapshotClassName: vpc-block-snapshot
    rohitpatil@ropatil-mac Downloads % oc get sc                           NAME                                   PROVISIONER            RECLAIMPOLICY   VOLUMEBINDINGMODE      ALLOWVOLUMEEXPANSION   AGEmysc                                   vpc.block.csi.ibm.io   Delete          WaitForFirstConsumer   true                   2m37s
    rohitpatil@ropatil-mac Downloads % oc get pvc,pod -n testropatilNAME                              STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   AGEpersistentvolumeclaim/mypvc-csi   Bound    pvc-1a014601-8176-4c55-93cf-d408460b9359   26Gi       RWO            mysc           27s
    NAME                         READY   STATUS    RESTARTS   AGEpod/mydep-5477fd946b-w77sw   1/1     Running   0          27s 
    rohitpatil@ropatil-mac Downloads % oc get volumesnapshot -n testropatilNAME              READYTOUSE   SOURCEPVC   SOURCESNAPSHOTCONTENT   RESTORESIZE   SNAPSHOTCLASS        SNAPSHOTCONTENT                                    CREATIONTIME   AGEmy-snapshot-new   true         mypvc-csi                           1Gi           vpc-block-snapshot   snapcontent-a40f3a17-8697-4215-8a2f-77d3d5592c60   29s            32s 

    Actual results:

    volumesnapshot RESTORESIZE is 1Gi which is not the same to pvc request size(26Gi)

    Expected results:

    volumesnapshot should be the same size of pvc request size

    Additional info:

     

I'd disabled Telemetry for the bulk of the CI fleet in OTA-740. But that lead to many
failures for:

[sig-instrumentation] Prometheus when installed on the cluster should report telemetry if a cloud.openshift.com token is present [Late] [Skipped:Disconnected] [Suite:openshift/conformance/parallel]

We should extend the checks for Telemetry enablement to include telemeterClient.enabled in the monitoring-specific ConfigMap, as well as the previously-checked pull-secret token.

Description of problem:

When log line number is too big, the number will overlap with cut-off line in the log viewer.

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-08-15-150248

How reproducible:

Always

Steps to Reproduce:
1.Go to a pod log page with lots of logs, such as pod in openshift-cluster-version namespace. Check log line numbers.
2.
3.

Actual results:

1. When line number is too big, it will overlap with cut-off line.

Expected results:

1. Should have no overlaps in logs

Additional info:

This is a clone of issue OCPBUGS-6270. The following is the description of the original issue:

Similar to how, due to the install-config validation, the baremetal platform previously required a bunch of fields that are actually ignored (OCPBUGS-3278), we similarly require values for the following fields in the platform.vsphere section:

  • vCenter
  • username
  • password
  • datacenter
  • defaultDatastore

None of these values are actually used in the agent-based installer at present, and they should not be required.

Users can work around this by specifying dummy values in the platform config (note that the VIP values are required and must be genuine):

platform:
  vsphere:
    apiVIP: 192.168.111.1
    ingressVIP: 192.168.111.2
    vCenter: a
    username: b
    password: c
    datacenter: d
    defaultDatastore: e

This is a clone of issue OCPBUGS-4401. The following is the description of the original issue:

Description of problem:

cluster-policy-controller has  unnecessary permissions and is able to operate on all leases in KCM namespace. This also applies to namespace-security-allocation-controller that was moved some time ago and does not need lock mechanism.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

 
 
 

 

Description of problem:

mapi_machinehealthcheck_short_circuit is not properly reconciling the state, when a MachineHealthCheck is failing because of unhealthy Machines but then is removed.

When doing two MachineSet (called blue and green and only one has running Machines at a specific point in time) with MachineAutoscaler and MachineHealthCheck, the mapi_machinehealthcheck_short_circuit will continue to report 1 for MachineHealth that actually was removed because of a switch from blue to green.

$ oc get machineset | egrep 'blue|green'
housiocp4-wvqbx-worker-blue-us-east-2a    0         0                             2d17h
housiocp4-wvqbx-worker-green-us-east-2a   1         1         1       1           2d17h

$ oc get machineautoscaler
NAME                      REF KIND     REF NAME                                   MIN   MAX   AGE
worker-green-us-east-1a   MachineSet   housiocp4-wvqbx-worker-green-us-east-2a   1     4     2d17h

$ oc get machinehealthcheck
NAME                              MAXUNHEALTHY   EXPECTEDMACHINES   CURRENTHEALTHY
machine-api-termination-handler   100%           0                  0
worker-green-us-east-1a           40%            1                  1

      {
        "name": "machine-health-check-unterminated-short-circuit",
        "file": "/etc/prometheus/rules/prometheus-k8s-rulefiles-0/openshift-machine-api-machine-api-operator-prometheus-rules-ccb650d9-6fc4-422b-90bb-70452f4aff8f.yaml",
        "rules": [
          { 
            "state": "firing",
            "name": "MachineHealthCheckUnterminatedShortCircuit",
            "query": "mapi_machinehealthcheck_short_circuit == 1",
            "duration": 1800,
            "labels": {
              "severity": "warning"
            },
            "annotations": {
              "description": "The number of unhealthy machines has exceeded the `maxUnhealthy` limit for the check, you should check\nthe status of machines in the cluster.\n",
              "summary": "machine health check {{ $labels.name }} has been disabled by short circuit for more than 30 minutes"
            },
            "alerts": [
              { 
                "labels": {
                  "alertname": "MachineHealthCheckUnterminatedShortCircuit",
                  "container": "kube-rbac-proxy-mhc-mtrc",
                  "endpoint": "mhc-mtrc",
                  "exported_namespace": "openshift-machine-api",
                  "instance": "10.128.0.58:8444",
                  "job": "machine-api-controllers",
                  "name": "worker-blue-us-east-1a",
                  "namespace": "openshift-machine-api",
                  "pod": "machine-api-controllers-779dcb8769-8gcn6",
                  "service": "machine-api-controllers",
                  "severity": "warning"
                },
                "annotations": {
                  "description": "The number of unhealthy machines has exceeded the `maxUnhealthy` limit for the check, you should check\nthe status of machines in the cluster.\n",
                  "summary": "machine health check worker-blue-us-east-1a has been disabled by short circuit for more than 30 minutes"
                },
                "state": "firing",
                "activeAt": "2022-12-09T15:59:25.1287541Z",
                "value": "1e+00"
              }
            ],
            "health": "ok",
            "evaluationTime": 0.000648129,
            "lastEvaluation": "2022-12-12T09:35:55.140174009Z",
            "type": "alerting"
          }
        ],
        "interval": 30,
        "limit": 0,
        "evaluationTime": 0.000661589,
        "lastEvaluation": "2022-12-12T09:35:55.140165629Z"
      },

As we can see above, worker-blue-us-east-1a is no longer available and active but rather worker-green-us-east-1a. But worker-blue-us-east-1a was there before the switch to green has happen and was actuall reporting some unhealthy Machines. But since it's now gone, mapi_machinehealthcheck_short_circuit should properly reconcile as otherwise this is a false/positive alert.

Version-Release number of selected component (if applicable):

OpenShift Container Platform 4.12.0-rc.3 (but is also seen on previous version)

How reproducible:

- Always

Steps to Reproduce:

1. Setup OpenShift Container Platform 4 on AWS for example
2. Create blue and green MachineSet with MachineAutoScaler and MachineHealthCheck
3. Have active Machines for blue only
4. Trigger unhealthy Machines in blue MachineSet
5. Switch to green MachineSet, by removing MachineHealthCheck, MachineAutoscaler and setting replicate of blue MachineSet to 0
6. Create green MachineHealthCheck, MachineAutoscaler and scale geen MachineSet to 1
7. Observe how mapi_machinehealthcheck_short_circuit continues to report unhealthy state for blue MachineHealthCheck which no longer exists.

Actual results:

mapi_machinehealthcheck_short_circuit reporting problematic MachineHealthCheck even though the faulty MachineHealthCheck does no longer exist.

Expected results:

mapi_machinehealthcheck_short_circuit to properly reconcile it's state and remove MachineHealthChecks that have been removed on OpenShift Container Platform level

Additional info:

It kind of looks like similar to the issue reported in https://bugzilla.redhat.com/show_bug.cgi?id=2013528 respectively https://bugzilla.redhat.com/show_bug.cgi?id=2047702 (although https://bugzilla.redhat.com/show_bug.cgi?id=2047702 may not be super relevant)

This ticket is linked with

https://issues.redhat.com/browse/SDA-8177
https://issues.redhat.com/browse/SDA-8178

As a summary, a base domain for a hosted cluster may already contain the "cluster-name".

But it seems that Hypershift also encodes it during some reconciliation step:

https://github.com/openshift/hypershift/blob/main/support/globalconfig/dns.go#L20

Then when using a DNS base domain like:

"rosa.lponce-prod-01.qtii.p3.openshiftapps.com"

we will have A records like:

"*.apps.lponce-prod-01.rosa.lponce-prod-01.qtii.p3.openshiftapps.com"

The expected behaviour would be that given a DNS base domain:

"rosa.lponce-prod-01.qtii.p3.openshiftapps.com"

The resulting wildcard for Ingress would be:

"*.apps.rosa.lponce-prod-01.qtii.p3.openshiftapps.com"

Note that trying to configure a specific IngressSpec for a hosted cluster didn't work for our case, as the wildcards records are not created.

Description of problem:

Installing 1000+ SNOs via ACM/MCE via ZTP with gitops, a small percentage of clusters end up never completing install because the monitoring operator does not reconcile to available.

# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version             False       True          16h     Unable to apply 4.11.0: the cluster operator monitoring has not yet successfully rolled out
# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig get co monitoring
NAME         VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
monitoring             False       True          True       15h     Rollout of the monitoring stack failed and is degraded. Please investigate the degraded status error. 

 

Version-Release number of selected component (if applicable):

  • Hub OCP and SNO OCP - 4.11.0
  • ACM - 2.6.0-DOWNSTREAM-2022-08-11-23-41-09  (FC5)

 

How reproducible:

  • 2 out of 23 failures out of 1728 installs
  • ~8% of the failures are because of this issue
  • failure rate of ~.1% of the total installs

 

Additional info:

 

# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig get po -n openshift-monitoring
NAME                                                     READY   STATUS              RESTARTS   AGE
alertmanager-main-0                                      0/6     ContainerCreating   0          15h
cluster-monitoring-operator-54dd78cc74-l5w24             2/2     Running             0          15h
kube-state-metrics-b6455c4dc-8hcfn                       3/3     Running             0          15h
node-exporter-k7899                                      2/2     Running             0          15h
openshift-state-metrics-7984888fbd-cl67v                 3/3     Running             0          15h
prometheus-adapter-785bf4f975-wgmnh                      1/1     Running             0          15h
prometheus-k8s-0                                         0/6     Init:0/1            0          15h
prometheus-operator-74d8754ff7-9zrgw                     2/2     Running             0          15h
prometheus-operator-admission-webhook-6665fb687d-c5jgv   1/1     Running             0          15h
thanos-querier-575496c665-jcc8l                          6/6     Running             0          15h 
# oc --kubeconfig=/root/hv-vm/sno/manifests/sno01219/kubeconfig describe po -n openshift-monitoring alertmanager-main-0
Name:                 alertmanager-main-0
Namespace:            openshift-monitoring
Priority:             2000000000
Priority Class Name:  system-cluster-critical
Node:                 sno01219/fc00:1001::8aa
Start Time:           Mon, 15 Aug 2022 23:53:39 +0000
Labels:               alertmanager=main
                      app.kubernetes.io/component=alert-router
                      app.kubernetes.io/instance=main
                      app.kubernetes.io/managed-by=prometheus-operator
                      app.kubernetes.io/name=alertmanager
                      app.kubernetes.io/part-of=openshift-monitoring
                      app.kubernetes.io/version=0.24.0
                      controller-revision-hash=alertmanager-main-fcf8dd5fb
                      statefulset.kubernetes.io/pod-name=alertmanager-main-0
Annotations:          kubectl.kubernetes.io/default-container: alertmanager
                      openshift.io/scc: nonroot
Status:               Pending
IP:
IPs:                  <none>
Controlled By:        StatefulSet/alertmanager-main
Containers:
  alertmanager:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:91308d35c1e56463f55c1aaa519ff4de7335d43b254c21abdb845fc8c72821a1
    Image ID:
    Ports:         9094/TCP, 9094/UDP
    Host Ports:    0/TCP, 0/UDP
    Args:
      --config.file=/etc/alertmanager/config/alertmanager.yaml
      --storage.path=/alertmanager
      --data.retention=120h
      --cluster.listen-address=
      --web.listen-address=127.0.0.1:9093
      --web.external-url=https:/console-openshift-console.apps.sno01219.rdu2.scalelab.redhat.com/monitoring
      --web.route-prefix=/
      --cluster.peer=alertmanager-main-0.alertmanager-operated:9094
      --cluster.reconnect-timeout=5m
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     4m
      memory:  40Mi
    Environment:
      POD_IP:   (v1:status.podIP)
    Mounts:
      /alertmanager from alertmanager-main-db (rw)
      /etc/alertmanager/certs from tls-assets (ro)
      /etc/alertmanager/config from config-volume (rw)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy-metric from secret-alertmanager-kube-rbac-proxy-metric (ro)
      /etc/alertmanager/secrets/alertmanager-main-proxy from secret-alertmanager-main-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-main-tls from secret-alertmanager-main-tls (ro)
      /etc/pki/ca-trust/extracted/pem/ from alertmanager-trusted-ca-bundle (ro)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  config-reloader:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:209e20410ec2d3d7a502f568d2b7fe1cd1beadcb36fff2d1e6f59d77be3200e3
    Image ID:
    Port:          <none>
    Host Port:     <none>
    Command:
      /bin/prometheus-config-reloader
    Args:
      --listen-address=localhost:8080
      --reload-url=http://localhost:9093/-/reload
      --watched-dir=/etc/alertmanager/config
      --watched-dir=/etc/alertmanager/secrets/alertmanager-main-tls
      --watched-dir=/etc/alertmanager/secrets/alertmanager-main-proxy
      --watched-dir=/etc/alertmanager/secrets/alertmanager-kube-rbac-proxy
      --watched-dir=/etc/alertmanager/secrets/alertmanager-kube-rbac-proxy-metric
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  10Mi
    Environment:
      POD_NAME:  alertmanager-main-0 (v1:metadata.name)
      SHARD:     -1
    Mounts:
      /etc/alertmanager/config from config-volume (ro)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-kube-rbac-proxy-metric from secret-alertmanager-kube-rbac-proxy-metric (ro)
      /etc/alertmanager/secrets/alertmanager-main-proxy from secret-alertmanager-main-proxy (ro)
      /etc/alertmanager/secrets/alertmanager-main-tls from secret-alertmanager-main-tls (ro)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  alertmanager-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:140f8947593d92e1517e50a201e83bdef8eb965b552a21d3caf346a250d0cf6e
    Image ID:
    Port:          9095/TCP
    Host Port:     0/TCP
    Args:
      -provider=openshift
      -https-address=:9095
      -http-address=
      -email-domain=*
      -upstream=http://localhost:9093
      -openshift-sar=[{"resource": "namespaces", "verb": "get"}, {"resource": "alertmanagers", "resourceAPIGroup": "monitoring.coreos.com", "namespace": "openshift-monitoring", "verb": "patch", "resourceName": "non-existant"}]
      -openshift-delegate-urls={"/": {"resource": "namespaces", "verb": "get"}, "/": {"resource":"alertmanagers", "group": "monitoring.coreos.com", "namespace": "openshift-monitoring", "verb": "patch", "name": "non-existant"}}
      -tls-cert=/etc/tls/private/tls.crt
      -tls-key=/etc/tls/private/tls.key
      -client-secret-file=/var/run/secrets/kubernetes.io/serviceaccount/token
      -cookie-secret-file=/etc/proxy/secrets/session_secret
      -openshift-service-account=alertmanager-main
      -openshift-ca=/etc/pki/tls/cert.pem
      -openshift-ca=/var/run/secrets/kubernetes.io/serviceaccount/ca.crt
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:     1m
      memory:  20Mi
    Environment:
      HTTP_PROXY:
      HTTPS_PROXY:
      NO_PROXY:
    Mounts:
      /etc/pki/ca-trust/extracted/pem/ from alertmanager-trusted-ca-bundle (ro)
      /etc/proxy/secrets from secret-alertmanager-main-proxy (rw)
      /etc/tls/private from secret-alertmanager-main-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  kube-rbac-proxy:
    Container ID:
    Image:         quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:b5e1c69d005727e3245604cfca7a63e4f9bc6e15128c7489e41d5e967305089e
    Image ID:
    Port:          9092/TCP
    Host Port:     0/TCP
    Args:
      --secure-listen-address=0.0.0.0:9092
      --upstream=http://127.0.0.1:9096
      --config-file=/etc/kube-rbac-proxy/config.yaml
      --tls-cert-file=/etc/tls/private/tls.crt
      --tls-private-key-file=/etc/tls/private/tls.key
      --tls-cipher-suites=TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256
      --logtostderr=true
      --tls-min-version=VersionTLS12
    State:          Waiting
      Reason:       ContainerCreating
    Ready:          False
    Restart Count:  0
    Requests:
      cpu:        1m
      memory:     15Mi
    Environment:  <none>
    Mounts:
      /etc/kube-rbac-proxy from secret-alertmanager-kube-rbac-proxy (rw)
      /etc/tls/private from secret-alertmanager-main-tls (rw)
      /var/run/secrets/kubernetes.io/serviceaccount from kube-api-access-hl77l (ro)
  kube-rbac-proxy-metric:
    Cont