Back to index

4.12.12

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The End of General support for vSphere 6.7 will be on October 15, 2022. So, vSphere 6.7 will be deprecated for 4.11.

We want to encourage vSphere customers to upgrade to vSphere 7 in OCP 4.11 since VMware is EOLing (general support) for vSphere 6.7 in Oct 2022.

We want the cluster Upgradeable=false + have a strong alert pointing to our docs / requirements.

related slack: https://coreos.slack.com/archives/CH06KMDRV/p1647541493096729

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

This includes ibm-vpc-node-label-updater!

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

There is a new driver release 5.0.0 since the last rebase that includes snapshot support:

https://github.com/kubernetes-sigs/ibm-vpc-block-csi-driver/releases/tag/v5.0.0

Rebase the driver on v5.0.0 and update the deployments in ibm-vpc-block-csi-driver-operator.
There are no corresponding changes in ibm-vpc-node-label-updater since the last rebase.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Epic Goal

  • Enable the migration from a storage intree driver to a CSI based driver with minimal impact to the end user, applications and cluster
  • These migrations would include, but are not limited to:
    • CSI driver for AWS EBS
    • CSI driver for GCP
    • CSI driver for Azure (file and disk)
    • CSI driver for VMware vSphere

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

This Epic tracks the GA of this feature

Epic Goal

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

OC mirror is GA product as of Openshift 4.11 .

The goal of this feature is to solve any future customer request for new features or capabilities in OC mirror 

Epic Goal

  • Mirror to mirror operations and custom mirroring flows required by IBM CloudPak catalog management

Why is this important?

  • IBM needs additional customization around the actual mirroring of images to enable CloudPaks to fully adopt OLM-style operator packaging and catalog management
  • IBM CloudPaks introduce additional compute architectures, increasing the download volume by 2/3rds to day, we need the ability to effectively filter non-required image versions of OLM operator catalogs during filtering for other customers that only require a single or a subset of the available image architectures
  • IBM CloudPaks regularly run on older OCP versions like 4.8 which require additional work to be able to read the mirrored catalog produced by oc mirror

Scenarios

  1. Customers can use the oc utility and delegate the actual image mirror step to another tool
  2. Customers can mirror between disconnected registries using the oc utility
  3. The oc utility supports filtering manifest lists in the context of multi-arch images according to the sparse manifest list proposal in the distribution spec

Acceptance Criteria

  • Customers can use the oc utility to mirror between two different air-gapped environments
  • Customers can specify the desired computer architectures and oc mirror will create sparse manifest lists in the target registry as a result

Dependencies (internal and external)

Previous Work:

  1. WRKLDS-369
  2. Disconnected Mirroring Improvement Proposal

Related Work:

  1. https://github.com/opencontainers/distribution-spec/pull/310
  2. https://github.com/distribution/distribution/pull/3536
  3. https://docs.google.com/document/d/10ozLoV7sVPLB8msLx4LYamooQDSW-CAnLiNiJ9SER2k/edit?usp=sharing

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

Overview 

HyperShift came to life to serve multiple goals, some are main near-term, some are secondary that serve well long-term. 

Main Goals for hosted control planes (HyperShift)

  • Optimize OpenShift for Cost/footprint/ which improves our competitive stance against the *KSes
  • Establish separation of concerns which makes it more resilient for SRE to manage their workload clusters (be it security, configuration management, etc).
  • Simplify and enhance multi-cluster management experience especially since multi-cluster is becoming an industry need nowadays. 

Secondary Goals

HyperShift opens up doors to penetrate the market. HyperShift enables true hybrid (CP and Workers decoupled, mixed IaaS, mixed Arch,...). An architecture that opens up more options to target new opportunities in the cloud space. For more details on this one check: Hosted Control Planes (aka HyperShift) Strategy [Live Document]

 

Hosted Control Planes (HyperShift) Map 

To bring hosted control planes to our customers, we need the means to ship it. Today MCE is how HyperShift shipped, and installed so that customers can use it. There are two main customers for hosted-control-planes: 

 

  • Self-managed: In that case, Red Hat would provide hosted control planes as a service that is managed and SREed by the customer for their tenants (hence “self”-managed). In this management model, our external customers are the direct consumers of the multi-cluster control plane as a servie. Once MCE is installed, they can start to self-service dedicated control planes. 

 

  • Managed: This is OpenShift as a managed service, today we only “manage” the CP, and share the responsibility for other system components, more info here. To reduce management costs incurred by service delivery organizations which translates to operating profit (by reducing variable costs per control-plane), as well as to improve user experience, lower platform overhead (allow customers to focus mostly on writing applications and not concern themselves with infrastructure artifacts), and improve the cluster provisioning experience. HyperShift is shipped via MCE, and delivered to Red Hat managed SREs (same consumption route). However, for managed services, additional tooling needs to be refactored to support the new provisioning path. Furthermore, unlike self-managed where customers are free to bring their own observability stack, Red Hat managed SREs need to observe the managed fleet to ensure compliance with SLOs/SLIs/…

 

If you have noticed, MCE is the delivery mechanism for both management models. The difference between managed and self-managed is the consumer persona. For self-managed, it's the customer SRE for managed its the RH SRE

High-level Requirements

For us to ship HyperShift in the product (as hosted control planes) in either management model, there is a necessary readiness checklist that we need to satisfy. Below are the high-level requirements needed before GA: 

 

  • Hosted control planes fits well with our multi-cluster story (with MCE)
  • Hosted control planes APIs are stable for consumption  
  • Customers are not paying for control planes/infra components.  
  • Hosted control planes has an HA and a DR story
  • Hosted control planes is in parity with top-level add-on operators 
  • Hosted control planes reports metrics on usage/adoption
  • Hosted control planes is observable  
  • HyperShift as a backend to managed services is fully unblocked.

 

Please also have a look at our What are we missing in Core HyperShift for GA Readiness? doc. 

Hosted control planes fits well with our multi-cluster story

Multi-cluster is becoming an industry need today not because this is where trend is going but because it’s the only viable path today to solve for many of our customer’s use-cases. Below is some reasoning why multi-cluster is a NEED:

 

 

As a result, multi-cluster management is a defining category in the market where Red Hat plays a key role. Today Red Hat solves for multi-cluster via RHACM and MCE. The goal is to simplify fleet management complexity by providing a single pane of glass to observe, secure, police, govern, configure a fleet. I.e., the operand is no longer one cluster but a set, a fleet of clusters. 

HyperShift logically centralized architecture, as well as native separation of concerns and superior cluster lifecyle management experience, makes it a great fit as the foundation of our multi-cluster management story. 

Thus the following stories are important for HyperShift: 

  • When lifecycling OpenShift clusters (for any OpenShift form factor) on any of the supported providers from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to use a consistent UI so I can manage and operate (observe, govern,...) a fleet of clusters.
  • I want to specify HA constraints (e.g., deploy my clusters in different regions) while ensuring acceptable QoS (e.g., latency boundaries) to ensure/reduce any potential downtime for my workloads. 
  • When operating OpenShift clusters (for any OpenShift form factor) on any of the supported provider from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin):
  • I want to be able to backup any critical data so I am able to restore them in case of hosting service cluster (management cluster) failure. 

Refs:

Hosted control planes APIs are stable for consumption.

 

HyperShift is the core engine that will be used to provide hosted control-planes for consumption in managed and self-managed. 

 

Main user story:  When life cycling clusters as a cluster service consumer via HyperShift core APIs, I want to use a stable/backward compatible API that is less susceptible to future changes so I can provide availability guarantees. 

 

Ref: What are we missing in Core HyperShift for GA Readiness?

Customers are not paying for control planes/infra components. 

 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumptions

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

HyperShift - proposed cuts from data plane

HyperShift has an HA and a DR story

When operating OpenShift clusters (for any OpenShift form factor) from MCE/ACM/OCM/CLI as a Cluster Service Consumer  (RH managed SRE, or self-manage SRE/admin) I want to be able to migrate CPs from one hosting service cluster to another:

  • as means for disaster recovery in the case of total failure
  • so that scaling pressures on a management cluster can be mitigated or a management cluster can be decommissioned.

More information: 

 

Hosted control planes reports metrics on usage/adoption

To understand usage patterns and inform our decision making for the product. We need to be able to measure adoption and assess usage.

See Hosted Control Planes (aka HyperShift) Strategy [Live Document]

Hosted control plane is observable  

Whether it's managed or self-managed, it’s pertinent to report health metrics to be able to create meaningful Service Level Objectives (SLOs), alert of failure to meet our availability guarantees. This is especially important for our managed services path. 

HyperShift is in parity with top-level add-on operators

https://issues.redhat.com/browse/OCPPLAN-8901 

Unblock HyperShift as a backend to managed services

HyperShift for managed services is a strategic company goal as it improves usability, feature, and cost competitiveness against other managed solutions, and because managed services/consumption-based cloud services is where we see the market growing (customers are looking to delegate platform overhead). 

 

We should make sure our SD milestones are unblocked by the core team. 

 

Note 

This feature reflects HyperShift core readiness to be consumed. When all related EPICs and stories in this EPIC are complete HyperShift can be considered ready to be consumed in GA form. This does not describe a date but rather the readiness of core HyperShift to be consumed in GA form NOT the GA itself.

- GA date for self-managed will be factoring in other inputs such as adoption, customer interest/commitment, and other factors. 
- GA dates for ROSA-HyperShift are on track, tracked in milestones M1-7 (have a look at https://issues.redhat.com/browse/OCPPLAN-5771

Epic Goal*

The goal is to split client certificate trust chains from the global Hypershift root CA.

 
Why is this important? (mandatory)

This is important to:

  • assure a workload can be run on any kind of OCP flavor
  • reduce the blast radius in case of a sensitive material leak
  • separate trust to allow more granular control over client certificate authentication

 
Scenarios (mandatory) 

Provide details for user scenarios including actions to be performed, platform specifications, and user personas.  

  1. I would like to be able to run my workloads on any OpenShift-like platform.
    My workloads allow components to authenticate using client certificates based
    on a trust bundle that I am able to retrieve from the cluster.
  1. I don't want my users to have access to any CA bundle that would allow them
    to trust a random certificate from the cluster for client certificate authentication.

 
Dependencies (internal and external) (mandatory)

Hypershift team needs to provide us with code reviews and merge the changes we are to deliver

Contributing Teams(and contacts) (mandatory) 

  • Development - OpenShift Auth, Hypershift
  • Documentation -OpenShift Auth Docs team
  • QE - OpenShift Auth QE
  • PX - I have no idea what PX is
  • Others - others

Acceptance Criteria (optional)

The serviceaccount CA bundle automatically injected to all pods cannot be used to authenticate any client certificate generated by the control-plane.

Drawbacks or Risk (optional)

Risk: there is a throbbing time pressure as this should be delivered before first stable Hypershift release

Done - Checklist (mandatory)

  • CI Testing -  Basic e2e automationTests are merged and completing successfully
  • Documentation - Content development is complete.
  • QE - Test scenarios are written and executed successfully.
  • Technical Enablement - Slides are complete (if requested by PLM)
  • Engineering Stories Merged
  • All associated work items with the Epic are closed
  • Epic status should be “Release Pending” 

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

We plan to build Ironic Container Images using RHEL9 as base image in OCP 4.12

This is required because the ironic components have abandoned support for CentOS Stream 8 and Python 3.6/3.7 upstream during the most recent development cycle that will produce the stable Zed release, in favor of CentOS Stream 9 and Python 3.8/3.9

More info on RHEL8 to RHEL9 transition in OCP can be found at https://docs.google.com/document/d/1N8KyDY7KmgUYA9EOtDDQolebz0qi3nhT20IOn4D-xS4

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a SRE, I want hypershift operator to expose a metric when hosted control plane is ready. 

This should allow SRE to tune (or silence) alerts occurring while the hosted control plane is spinning up. 

 

 

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The Kube APIServer has a sidecar to output audit logs. We need similar sidecars for other APIServers that run on the control plane side. We also need to pass the same audit log policy that we pass to the KAS to these other API servers.

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Place holder epic to track spontaneous task which does not deserve its own epic.

DoD:

At the moment if the input etcd kms encryption (key and role) is invalid we fail transparently.

We should check that both key and role are compatible/operational for a given cluster and fail in a condition otherwise

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

This is a clone of issue OCPBUGS-3633. The following is the description of the original issue:

I think something is wrong with the alerts refactor, or perhaps my sync to 4.12.

Failed: suite=[openshift-tests], [sig-instrumentation][Late] Alerts shouldn't report any unexpected alerts in firing or pending state [apigroup:config.openshift.io] [Suite:openshift/conformance/parallel]

Passed 1 times, failed 0 times, skipped 0 times: we require at least 6 attempts to have a chance at success

We're not getting the passes - from https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/aggregated-azure-ovn-upgrade-4.12-micro-release-openshift-release-analysis-aggregator/1592021681235300352, the successful runs don't show any record of the test at all. We need to record successes and failures for aggregation to work right.

The issue found while testing HOSTEDCP-400 and HOSTEDCP-401.

Hypershift operator installed with flags:

 

--platform-monitoring=operator-only
--enable-uwm-telemetry-remote-write=true
--metrics-set=telemetry

 

Service monitors and pod monitors in the control plane:

 

[jiezhao@cube hypershift]$ oc get servicemonitor -n clusters-jz-test
NAME                                  AGE
catalog-operator                      45m
cluster-version-operator              45m
etcd                                  46m
kube-apiserver                        46m
kube-controller-manager               45m
monitor-multus-admission-controller   43m
monitor-ovn-master-metrics            43m
node-tuning-operator                  45m
olm-operator                          45m
openshift-apiserver                   45m
openshift-controller-manager          45m

[jiezhao@cube hypershift]$ oc get podmonitor -n clusters-jz-test
NAME                              AGE
cluster-image-registry-operator   46m
controlplane-operator             47m
hosted-cluster-config-operator    46m
ignition-server                   47m

 

In OCP management web console, go to Observe->Targets:

 

1. Status of service monitor 'monitor-multus-admission-controller' is Down, error:
   Scraped failed: server returned HTTP status 401 Unauthorized.
   It doesn't have cluster id in target labels
2. Target of pod monitor 'cluster-image-registry-operator' is missing, not shown

 

Description of problem:

cloud-network-config-controller pod crashloops in proxy deployments as it tries to reach Openstack keystone API directly (not through the proxy) and there is no connectivity.

NAMESPACE                                          NAME                                                         READY   STATUS             RESTARTS          AGE
openshift-cloud-network-config-controller          cloud-network-config-controller-c4867b748-vlq9h              0/1     CrashLoopBackOff   158 (2m10s ago)   13h

$ oc -n openshift-cloud-network-config-controller logs -p cloud-network-config-controller-c4867b748-vlq9h
W0927 05:48:18.678947       1 client_config.go:617] Neither --kubeconfig nor --master was specified.  Using the inClusterConfig.  This might not work.
I0927 05:48:18.680269       1 leaderelection.go:248] attempting to acquire leader lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock...
I0927 05:48:26.754377       1 leaderelection.go:258] successfully acquired lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock
I0927 05:48:26.755413       1 openstack.go:121] Custom CA bundle found at location '/kube-cloud-config/ca-bundle.pem' - reading certificate information
F0927 05:48:28.233519       1 main.go:101] Error building cloud provider client, err: Get "https://10.46.44.10:13000/": dial tcp 10.46.44.10:13000: connect: no route to host
goroutine 51 [running]:
k8s.io/klog/v2.stacks(0x1)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:860 +0x8a
k8s.io/klog/v2.(*loggingT).output(0x37696c0, 0x3, 0x0, 0xc000636000, 0x1, {0x2cbcbd8?, 0x1?}, 0xc000438400?, 0x0)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:825 +0x686
k8s.io/klog/v2.(*loggingT).printfDepth(0x37696c0, 0x237798a?, 0x0, {0x0, 0x0}, 0x7fff81041af7?, {0x23a20d0, 0x2d}, {0xc00052c050, 0x1, ...})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:630 +0x1f2
k8s.io/klog/v2.(*loggingT).printf(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:612
k8s.io/klog/v2.Fatalf(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:1516
main.main.func1({0x26e5638, 0xc00016c040})
        /go/src/github.com/openshift/cloud-network-config-controller/cmd/cloud-network-config-controller/main.go:101 +0x26d
created by k8s.io/client-go/tools/leaderelection.(*LeaderElector).Run
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:211 +0x11bgoroutine 1 [select]:
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc00052bb60?, {0x26cee20, 0xc000581740}, 0x1, 0xc00052bb60)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:167 +0x135
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0xc00016c080?, 0x60db88400, 0x0, 0x20?, 0x7fea470ec108?)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x89
k8s.io/apimachinery/pkg/util/wait.Until(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
k8s.io/client-go/tools/leaderelection.(*LeaderElector).renew(0xc0000a8120, {0x26e5638?, 0xc00016c040?})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:268 +0xd0
k8s.io/client-go/tools/leaderelection.(*LeaderElector).Run(0xc0000a8120, {0x26e5638, 0xc00025fcc0})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:212 +0x12f
k8s.io/client-go/tools/leaderelection.RunOrDie({0x26e5638, 0xc00025fcc0}, {{0x26e7430, 0xc00062afa0}, 0x1fe5d61a00, 0x18e9b26e00, 0x60db88400, {0xc00065e630, 0xc000634810, 0x0}, ...})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:226 +0x94
main.main()
        /go/src/github.com/openshift/cloud-network-config-controller/cmd/cloud-network-config-controller/main.go:86 +0x450

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-26-050728

How reproducible:

Always

Steps to Reproduce:

1. Install OCP with proxy

Actual results:

Bootstrap failure and pod crashloop

Expected results:

Successful installation

Additional info:

Please find the must-gather here.

Description of problem:

If using ingresscontroller.spec.routeSelector.matchExpressions or ingresscontroller.spec.namespaceSelector.matchExpressions, the route will not count in the new route_metrics_controller_routes_per_shard prometheus metric.

This is due to the logic only using "matchLabels". The logic needs to be updated to also use "matchExpressions".

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1. Create IC with matchExpressions:
oc apply -f - <<EOF
apiVersion: operator.openshift.io/v1
kind: IngressController
metadata:
  name: sharded
  namespace: openshift-ingress-operator
spec:
  domain: reproducer.$domain
  routeSelector:
    matchExpressions:
    - key: type
      operator: In
      values:
      - shard
  replicas: 1
  nodePlacement:
    nodeSelector:
      matchLabels:
        node-role.kubernetes.io/worker: ""
EOF

2. Create the route:
oc apply -f - <<EOF
apiVersion: route.openshift.io/v1
kind: Route
metadata:
  name: route-shard
  labels:
    type: shard
spec:
  to:
    kind: Service
    name: router-shard
EOF

 3. Check route_metrics_controller_routes_per_shard{name="sharded"} in prometheus, it's 0 

Actual results:

route_metrics_controller_routes_per_shard{name="sharded"} has 0 routes

Expected results:

route_metrics_controller_routes_per_shard{name="sharded"} should have 1 route

Additional info:

 

Description of problem:

If you set a services cluster IP to an IP with a leading zero (e.g. 192.168.0.011), ovn-k should normalise this and remove the leading zero before sending it to ovn.

This was seen by me on a CI run executing the k8 test here: test/e2e/network/funny_ips.go +75

you can reproduce using that above test.

Have a read of the text there:

 43 // What are funny IPs:  
 44 // The adjective is because of the curl blog that explains the history and the problem of liberal  
 45 // parsing of IP addresses and the consequences and security risks caused the lack of normalization,
 46 // mainly due to the use of different notations to abuse parsers misalignment to bypass filters.
 47 // xref: https://daniel.haxx.se/blog/2021/04/19/curl-those-funny-ipv4-addresses/   
 48 //     
 49 // Since golang 1.17, IPv4 addresses with leading zeros are rejected by the standard library.
 50 // xref: https://github.com/golang/go/issues/30999
 51 //     
 52 // Because this change on the parsers can cause that previous valid data become invalid, Kubernetes
 53 // forked the old parsers allowing leading zeros on IPv4 address to not break the compatibility.
 54 //     
 55 // Kubernetes interprets leading zeros on IPv4 addresses as decimal, users must not rely on parser
 56 // alignment to not being impacted by the associated security advisory: CVE-2021-29923 golang
 57 // standard library "net" - Improper Input Validation of octal literals in golang 1.16.2 and below
 58 // standard library "net" results in indeterminate SSRF & RFI vulnerabilities. xref:
 59 // https://nvd.nist.gov/vuln/detail/CVE-2021-29923                                                                                                     

northd is logging an error about this also:

|socket_util|ERR|172.30.0.011:7180: bad IP address "172.30.0.011" 
...
2022-08-23T14:14:21.968Z|01839|ovn_util|WARN|bad ip address or port for load balancer key 172.30.0.011:7180

 

Also, I see the error:

E0823 14:14:34.135115    3284 gateway_shared_intf.go:600] Failed to delete conntrack entry for service e2e-funny-ips-8626/funny-ip: failed to delete conntrack entry for service e2e-funny-ips-8626/funny-ip with svcVIP 172.30.0.011, svcPort 7180, protocol TCP: value "<nil>" passed to DeleteConntrack is not an IP address 

We should normalise the IPs before sending to OVN-k. I see also theres conntrack error when trying to set this bad IP.

 

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1. See above k8 test

Actual results:

Leading zero IP sent to OVN

Expected results:

No leading zero IP sent to OVN

Additional info:

This is a clone of issue OCPBUGS-3414. The following is the description of the original issue:

Description of problem:

The current implementation of new OCI FBC feature omits the creation of the ImageContentSourcePolicy
 and CatalogSource resources

 

Description of problem:

scale up more worker nodes but they are not added to the Load Balancer instances (backend pool), if moving the router pod to the new worker nodes then co/ingress becomes degraded

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-23-204408

How reproducible:

100%

Steps to Reproduce:

1. ensure the fresh install cluster works well.
2. scale up worker nodes.
$ oc -n openshift-machine-api get machineset
NAME                                  DESIRED   CURRENT   READY   AVAILABLE   AGE
hongli-1024-hnkrm-worker-us-east-2a   1         1         1       1           5h21m
hongli-1024-hnkrm-worker-us-east-2b   1         1         1       1           5h21m
hongli-1024-hnkrm-worker-us-east-2c   1         1         1       1           5h21m

$ oc -n openshift-machine-api scale machineset hongli-1024-hnkrm-worker-us-east-2a --replicas=2
machineset.machine.openshift.io/hongli-1024-hnkrm-worker-us-east-2a scaled

$ oc -n openshift-machine-api scale machineset hongli-1024-hnkrm-worker-us-east-2b --replicas=2
machineset.machine.openshift.io/hongli-1024-hnkrm-worker-us-east-2b scaled

(about 5 minutes later)
$ oc -n openshift-machine-api get machineset
NAME                                  DESIRED   CURRENT   READY   AVAILABLE   AGE
hongli-1024-hnkrm-worker-us-east-2a   2         2         2       2           5h29m
hongli-1024-hnkrm-worker-us-east-2b   2         2         2       2           5h29m
hongli-1024-hnkrm-worker-us-east-2c   1         1         1       1           5h29m


3. delete router pods and to make new ones running on new workers

$ oc get node
NAME                                         STATUS   ROLES                  AGE     VERSION
ip-10-0-128-45.us-east-2.compute.internal    Ready    worker                 71m     v1.25.2+4bd0702
ip-10-0-131-192.us-east-2.compute.internal   Ready    control-plane,master   6h35m   v1.25.2+4bd0702
ip-10-0-139-51.us-east-2.compute.internal    Ready    worker                 6h29m   v1.25.2+4bd0702
ip-10-0-162-228.us-east-2.compute.internal   Ready    worker                 71m     v1.25.2+4bd0702
ip-10-0-172-216.us-east-2.compute.internal   Ready    control-plane,master   6h35m   v1.25.2+4bd0702
ip-10-0-190-82.us-east-2.compute.internal    Ready    worker                 6h25m   v1.25.2+4bd0702
ip-10-0-196-26.us-east-2.compute.internal    Ready    control-plane,master   6h35m   v1.25.2+4bd0702
ip-10-0-199-158.us-east-2.compute.internal   Ready    worker                 6h28m   v1.25.2+4bd0702

$ oc -n openshift-ingress get pod -owide
NAME                              READY   STATUS    RESTARTS   AGE   IP           NODE                                         NOMINATED NODE   READINESS GATES
router-default-86444dcd84-cm96l   1/1     Running   0          65m   10.130.2.7   ip-10-0-128-45.us-east-2.compute.internal    <none>           <none>
router-default-86444dcd84-vpnjz   1/1     Running   0          65m   10.131.2.7   ip-10-0-162-228.us-east-2.compute.internal   <none>           <none>


Actual results:

$ oc get co ingress console authentication
NAME             VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
ingress          4.12.0-0.nightly-2022-10-23-204408   True        False         True       66m     The "default" ingress controller reports Degraded=True: DegradedConditions: One or more other status conditions indicate a degraded state: CanaryChecksSucceeding=False (CanaryChecksRepetitiveFailures: Canary route checks for the default ingress controller are failing)
console          4.12.0-0.nightly-2022-10-23-204408   False       False         False      66m     RouteHealthAvailable: failed to GET route (https://console-openshift-console.apps.hongli-1024.qe.devcluster.openshift.com): Get "https://console-openshift-console.apps.hongli-1024.qe.devcluster.openshift.com": EOF
authentication   4.12.0-0.nightly-2022-10-23-204408   False       False         True       66m     OAuthServerRouteEndpointAccessibleControllerAvailable: Get "https://oauth-openshift.apps.hongli-1024.qe.devcluster.openshift.com/healthz": EOF


checked the Load Balancer on AWS console and found that new created nodes are not added to load balancer. see the snapshot attached.

Expected results:

the LB should added new created instances automatically and ingress should work with new workers.

Additional info:

1. this is also reproducible with common user created LoadBalancer service.
2. if the LB service is created after adding the new nodes then it works well, we can see that all nodes are added to LB on AWS console.  

 

Description of problem:
This is a follow up on OCPBUGSM-47202 (https://bugzilla.redhat.com/show_bug.cgi?id=2110570)

While OCPBUGSM-47202 fixes the issue specific for Set Pod Count, many other actions aren't fixed. When the user updates a Deployment with one of this options, and selects the action again, the old values are still shown.

Version-Release number of selected component (if applicable)
4.8-4.12 as well as master with the changes of OCPBUGSM-47202

How reproducible:
Always

Steps to Reproduce:

  1. Import a deployment
  2. Select the deployment to open the topology sidebar
  3. Click on actions and one of the 4 options to update the deployment with a modal
    1. Edit labels
    2. Edit annotatations
    3. Edit update strategy
    4. Edit resource limits
  4. Click on the action again and check if the data in the modal reflects the changes from step 3

Actual results:
Old data (labels, annotations, etc.) was shown.

Expected results:
Latest data should be shown

Additional info:

Description of problem:

With "createFirewallRules: Enabled", after successful "create cluster" and then "destroy cluster", the created firewall-rules in the shared VPC are not deleted.

Version-Release number of selected component (if applicable):

$ ./openshift-install version
./openshift-install 4.12.0-0.nightly-2022-09-28-204419
built from commit 9eb0224926982cdd6cae53b872326292133e532d
release image registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc
release architecture amd64

How reproducible:

Always

Steps to Reproduce:

1. try IPI installation with "createFirewallRules: Enabled", which succeeded
2. try destroying the cluster, which succeeded
3. check firewall-rules in the shared VPC 

Actual results:

After destroying the cluster, its firewall-rules created by installer in the shared VPC are not deleted.

Expected results:

Those firewall-rules should be deleted during destroying the cluster.

Additional info:

$ gcloud --project openshift-qe-shared-vpc compute firewall-rules list --filter='network=installer-shared-vpc'
NAME                                NETWORK               DIRECTION  PRIORITY  ALLOW                                                    
                                                                                                 DENY  DISABLED
ci-op-xpn-ingress-common            installer-shared-vpc  INGRESS    60000     tcp:6443,tcp:22,tcp:80,tcp:443,icmp                      
                                                                                                       False
ci-op-xpn-ingress-health-checks     installer-shared-vpc  INGRESS    60000     tcp:30000-32767,udp:30000-32767,tcp:6080,tcp:6443,tcp:226
24,tcp:32335                                                                                           False
ci-op-xpn-ingress-internal-network  installer-shared-vpc  INGRESS    60000     udp:4789,udp:6081,udp:500,udp:4500,esp,tcp:9000-9999,udp:
9000-9999,tcp:10250,tcp:30000-32767,udp:30000-32767,tcp:10257,tcp:10259,tcp:22623,tcp:2379-2380        FalseTo show all fields of the firewall, please show in JSON format: --format=json
To show all fields in table format, please see the examples in --help.
$ 
$ yq-3.3.0 r test2/install-config.yaml platform
gcp:
  projectID: openshift-qe  
  region: us-central1
  computeSubnet: installer-shared-vpc-subnet-2
  controlPlaneSubnet: installer-shared-vpc-subnet-1
  createFirewallRules: Enabled
  network: installer-shared-vpc
  networkProjectID: openshift-qe-shared-vpc
$ 
$ yq-3.3.0 r test2/install-config.yaml metadata
creationTimestamp: null
name: jiwei-1013-01
$ 
$ openshift-install create cluster --dir test2
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
INFO Consuming Install Config from target directory
INFO Creating infrastructure resources...
INFO Waiting up to 20m0s (until 4:06AM) for the Kubernetes API at https://api.jiwei-1013-01.qe.gcp.devcluster.openshift.com:6443...
INFO API v1.24.0+8c7c967 up
INFO Waiting up to 30m0s (until 4:20AM) for bootstrapping to complete...
INFO Destroying the bootstrap resources...
INFO Waiting up to 40m0s (until 4:42AM) for the cluster at https://api.jiwei-1013-01.qe.gcp.devcluster.openshift.com:6443 to initialize...
INFO Checking to see if there is a route at openshift-console/console...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/fedora/test2/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.jiwei-1013-01.qe.gcp.devcluster.openshift.com
INFO Login to the console with user: "kubeadmin", and password: "wWPkc-8G2Lw-xe2Vw-DgWha"
INFO Time elapsed: 39m14s  
$ 
$ openshift-install destroy cluster --dir test2
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json"
INFO Stopped instance jiwei-1013-01-464st-worker-b-pmg5z
INFO Stopped instance jiwei-1013-01-464st-worker-a-csg2j
INFO Stopped instance jiwei-1013-01-464st-master-1
INFO Stopped instance jiwei-1013-01-464st-master-2
INFO Stopped instance jiwei-1013-01-464st-master-0
INFO Deleted 2 recordset(s) in zone qe
INFO Deleted 3 recordset(s) in zone jiwei-1013-01-464st-private-zone
INFO Deleted DNS zone jiwei-1013-01-464st-private-zone
INFO Deleted bucket jiwei-1013-01-464st-image-registry-us-central1-ulgxgjfqxbdnrhd
INFO Deleted instance jiwei-1013-01-464st-master-0
INFO Deleted instance jiwei-1013-01-464st-worker-a-csg2j
INFO Deleted instance jiwei-1013-01-464st-master-1
INFO Deleted instance jiwei-1013-01-464st-worker-b-pmg5z
INFO Deleted instance jiwei-1013-01-464st-master-2
INFO Deleted disk jiwei-1013-01-464st-master-2
INFO Deleted disk jiwei-1013-01-464st-master-1
INFO Deleted disk jiwei-1013-01-464st-worker-b-pmg5z
INFO Deleted disk jiwei-1013-01-464st-master-0
INFO Deleted disk jiwei-1013-01-464st-worker-a-csg2j
INFO Deleted address jiwei-1013-01-464st-cluster-public-ip
INFO Deleted address jiwei-1013-01-464st-cluster-ip
INFO Deleted forwarding rule a516d89f9a4f14bdfb55a525b1a12a91
INFO Deleted forwarding rule jiwei-1013-01-464st-api
INFO Deleted forwarding rule jiwei-1013-01-464st-api-internal
INFO Deleted target pool a516d89f9a4f14bdfb55a525b1a12a91
INFO Deleted target pool jiwei-1013-01-464st-api
INFO Deleted backend service jiwei-1013-01-464st-api-internal
INFO Deleted instance group jiwei-1013-01-464st-master-us-central1-a
INFO Deleted instance group jiwei-1013-01-464st-master-us-central1-c
INFO Deleted instance group jiwei-1013-01-464st-master-us-central1-b
INFO Deleted health check jiwei-1013-01-464st-api-internal
INFO Deleted HTTP health check a516d89f9a4f14bdfb55a525b1a12a91
INFO Deleted HTTP health check jiwei-1013-01-464st-api
INFO Time elapsed: 4m18s   
$ 
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules list --filter='network=installer-shared-vpc'
NAME                                          NETWORK               DIRECTION  PRIORITY  ALLOW                                                                                                                                                     DENY  DISABLED
ci-op-xpn-ingress-common                      installer-shared-vpc  INGRESS    60000     tcp:6443,tcp:22,tcp:80,tcp:443,icmp                                                                                                                             False
ci-op-xpn-ingress-health-checks               installer-shared-vpc  INGRESS    60000     tcp:30000-32767,udp:30000-32767,tcp:6080,tcp:6443,tcp:22624,tcp:32335                                                                                           False
ci-op-xpn-ingress-internal-network            installer-shared-vpc  INGRESS    60000     udp:4789,udp:6081,udp:500,udp:4500,esp,tcp:9000-9999,udp:9000-9999,tcp:10250,tcp:30000-32767,udp:30000-32767,tcp:10257,tcp:10259,tcp:22623,tcp:2379-2380        False
jiwei-1013-01-464st-api                       installer-shared-vpc  INGRESS    1000      tcp:6443                                                                                                                                                        False
jiwei-1013-01-464st-control-plane             installer-shared-vpc  INGRESS    1000      tcp:22623,tcp:10257,tcp:10259                                                                                                                                   False
jiwei-1013-01-464st-etcd                      installer-shared-vpc  INGRESS    1000      tcp:2379-2380                                                                                                                                                   False
jiwei-1013-01-464st-health-checks             installer-shared-vpc  INGRESS    1000      tcp:6080,tcp:6443,tcp:22624                                                                                                                                     False
jiwei-1013-01-464st-internal-cluster          installer-shared-vpc  INGRESS    1000      tcp:30000-32767,udp:9000-9999,udp:30000-32767,udp:4789,udp:6081,tcp:9000-9999,udp:500,udp:4500,esp,tcp:10250                                                    False
jiwei-1013-01-464st-internal-network          installer-shared-vpc  INGRESS    1000      icmp,tcp:22                                                                                                                                                     False
k8s-a516d89f9a4f14bdfb55a525b1a12a91-http-hc  installer-shared-vpc  INGRESS    1000      tcp:30268                                                                                                                                                       False
k8s-fw-a516d89f9a4f14bdfb55a525b1a12a91       installer-shared-vpc  INGRESS    1000      tcp:80,tcp:443                                                                                                                                                  FalseTo show all fields of the firewall, please show in JSON format: --format=json
To show all fields in table format, please see the examples in --help.
$ 

FYI manually deleting those firewall-rules in the shared VPC does work.
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-api
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-api].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-control-plane
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-control-plane].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-etcd
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-etcd].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-health-checks
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-health-checks].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-internal-cluster
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-internal-cluster].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q jiwei-1013-01-464st-internal-network
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/jiwei-1013-01-464st-internal-network].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q k8s-a516d89f9a4f14bdfb55a525b1a12a91-http-hc
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/k8s-a516d89f9a4f14bdfb55a525b1a12a91-http-hc].
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules delete -q k8s-fw-a516d89f9a4f14bdfb55a525b1a12a91
Deleted [https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/firewalls/k8s-fw-a516d89f9a4f14bdfb55a525b1a12a91].
$ 
$ gcloud --project openshift-qe-shared-vpc compute firewall-rules list --filter='network=installer-shared-vpc'
NAME                                NETWORK               DIRECTION  PRIORITY  ALLOW                                                                                                                                                     DENY  DISABLED
ci-op-xpn-ingress-common            installer-shared-vpc  INGRESS    60000     tcp:6443,tcp:22,tcp:80,tcp:443,icmp                                                                                                                             False
ci-op-xpn-ingress-health-checks     installer-shared-vpc  INGRESS    60000     tcp:30000-32767,udp:30000-32767,tcp:6080,tcp:6443,tcp:22624,tcp:32335                                                                                           False
ci-op-xpn-ingress-internal-network  installer-shared-vpc  INGRESS    60000     udp:4789,udp:6081,udp:500,udp:4500,esp,tcp:9000-9999,udp:9000-9999,tcp:10250,tcp:30000-32767,udp:30000-32767,tcp:10257,tcp:10259,tcp:22623,tcp:2379-2380        FalseTo show all fields of the firewall, please show in JSON format: --format=json
To show all fields in table format, please see the examples in --help.
$ 

 

 

 

 

Description of problem:

Custom manifest files can be placed in the /openshift folder so that they will be applied during cluster installation.
Anyhow, if a file contains more than one manifests, all but the first are ignored.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1.Create the following custom manifest file in the /openshift folder:

```
apiVersion: v1
kind: ConfigMap
metadata:  
  name: agent-test  
  namespace: openshift-config
data:  
  value: agent-test
---
apiVersion: v1
kind: ConfigMap
metadata: 
name: agent-test-2
namespace: openshift-config
data: 
  value: agent-test-2
```
2. Create the agent ISO image and deploy a cluster

Actual results:

ConfigMap agent-test-2 does not exist in the openshift-config namespace

Expected results:

ConfigMap agent-test-2 must exist in the openshift-config namespace

Additional info:

 

Description of problem:

The API Explorer page layout is incorrect,  please check the attachment for more details

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-08-15-150248

How reproducible:

Always

Steps to Reproduce:
1. Login OCP, Go to Home -> API Explorer page

2. Check if there is an extra blank line between the dropdown filter and the list 

Actual results:

There is an extra blank line between the dropdown filter and the list 

Expected results:

Use right patternfly package, remove the extra blank line

Additional info:

104.0.5112.79 (Official Build) (64-bit)

Description of problem:

Image registry pods panic while deploying OCP in ap-south-2 AWS region

Version-Release number of selected component (if applicable):

4.11.2

How reproducible:

Deploy OCP in AWS ap-south-2 region

Steps to Reproduce:

Deploy OCP in AWS ap-south-2 region 

Actual results:

panic: Invalid region provided: ap-south-2

Expected results:

Image registry pods should come up with no errors

Additional info:

 

 

 

 

 

Description of problem:

node_exporter collects network metrics for "virtual" interfaces like br-*. When OVN is used, it also reports metrics for ovs-*, ovn, and genev_sys_* interfaces.

Version-Release number of selected component (if applicable):

4.12 (and before)

How reproducible:

Always

Steps to Reproduce:

1. Launch a 4.12 cluster.
2. Run the following PromQL query: "group by(device) (node_network_info)"
3.

Actual results:

Expected results:

Only real host interfaces should be present.

Additional info:


Copied from an upstream issue: https://github.com/operator-framework/operator-lifecycle-manager/issues/2830

What did you do?

When attempting to reinstall an operator that uses conversion webhooks by

  • Deleting the operator subscription and any CSVs associated with it
  • Recreating the operator subscription

The resulting InstallPlan enters a failed state with message similar to

error validating existing CRs against new CRD's schema for "devworkspaces.workspace.devfile.io": error listing resources in GroupVersionResource schema.GroupVersionResource{Group:"workspace.devfile.io", Version:"v1alpha1", Resource:"devworkspaces"}: conversion webhook for workspace.devfile.io/v1alpha2, Kind=DevWorkspace failed: Post "https://devworkspace-controller-manager-service.test-namespace.svc:443/convert?timeout=30s": service "devworkspace-controller-manager-service" not found

When the original CSVs are deleted, the operator's main deployment and service are removed, but CRDs are left in-cluster. However, since the service/CA bundle/deployment that serve the conversion webhook are removed, conversion webhooks are broken at that point. Eventually this impacts garbage collection on the cluster as well.

This can be reproduced by installing the DevWorkspace Operator from the Red Hat catalog. (I can provide yamls/upstream images that reproduce as well, if that's helpful). It may be necessary to create a DevWorkspace in the cluster before deletion, e.g. by oc apply -f https://raw.githubusercontent.com/devfile/devworkspace-operator/main/samples/plain.yaml

What did you expect to see?
Operator is able to be reinstalled without removing CRDs and all instances.

What did you see instead? Under which circumstances?
It's necessary to completely remove the operator including CRDs. For our operator (DevWorkspace), this also makes uninstall especially complicated as finalizers are used (so CRDs cannot be deleted if the controller is removed, and the controller cannot be restored by reinstalling)

Environment

operator-lifecycle-manager version: 4.10.24

Kubernetes version information: Kubernetes Version: v1.23.5+012e945 (OpenShift 4.10.24)

Kubernetes cluster kind: OpenShift

Description of problem:

When scaling down the machineSet for worker nodes, a PV(vmdk) file got deleted.

Version-Release number of selected component (if applicable):

4.10

How reproducible:

N/A

Steps to Reproduce:

1. Scale down worker nodes
2. Check VMware logs and VM gets deleted with vmdk still attached

Actual results:

After scaling down nodes, volumes still attached to the VM get deleted alongside the VM

Expected results:

Worker nodes scaled down without any accidental deletion

Additional info:

 

This is a clone of issue OCPBUGS-2281. The following is the description of the original issue:

Description of problem:

E2E test cases for knative and pipeline packages have been disabled on CI due to respective operator installation issues. 
Tests have to be enabled after new operator version be available or the issue resolves

References:
https://coreos.slack.com/archives/C6A3NV5J9/p1664545970777239

Version-Release number of selected component (if applicable):


How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


This bug is a backport clone of [Bugzilla Bug 2100181](https://bugzilla.redhat.com/show_bug.cgi?id=2100181). The following is the description of the original bug:

Created attachment 1891950
log

Description of problem:

Prior to OCP 4.7.48, the configure-ovs script picked the corrected bonded interface for br-ex. In OCP 4.7.48 we have that is consistently fail. It picks one of the slave interfaces (ens3f0).

Version-Release number of selected component (if applicable):
OCP Release > OCP 4.7.37

How reproducible:
100%

Steps to Reproduce:
1. Deploy an OCP cluster with bonding
2.
3.

Actual results:

Expected results:

configure-ovs should not fail and assign the correct interface to br-ex (bond1)

Additional info:

There appears to be a new default NM profile from 4.7.37 to 4.7.38 a that was not there before

This is a clone of issue OCPBUGS-10221. The following is the description of the original issue:

This is a clone of issue OCPBUGS-5469. The following is the description of the original issue:

Description of problem:

When changing channels it's possible that multiple new conditional update risks will need to be evaluated. For instance, a cluster running 4.10.34 in a 4.10 channel today only has to evaluate `OpenStackNodeCreationFails` but when the channel is changed to a 4.11 channel multiple new risks require evaluation and the evaluation of new risks is throttled at one every 10 minutes. This means if there are three new risks it may take up to 30 minutes after the channel has changed for the full set of conditional updates to be computed. This leads to a perception that no update paths are recommended because most will not wait 30 minutes, they expect immediate feedback.

Version-Release number of selected component (if applicable):

4.10.z, 4.11.z, 4.12, 4.13

How reproducible:

100% 

Steps to Reproduce:

1. Install 4.10.34
2. Switch from stable-4.10 to stable-4.11
3. 

Actual results:

Observe no recommended updates for 10-20 minutes because all available paths to 4.11 have a risk associated with them

Expected results:

Risks are computed in a timely manner for an interactive UX, lets say < 10s

Additional info:

This was intentional in the design, we didn't want risks to continuously re-evaluate or overwhelm the monitoring stack, however we didn't anticipate that we'd have long standing pile of risks and realize how confusing the user experience would be.

We intend to work around this in the deployed fleet by converting older risks from `type: promql` to `type: Always` avoiding the evaluation period but preserving the notification. While this may lead customers to believe they're exposed to a risk they may not be, as long as the set of outstanding risks to the latest version is limited to no more than one it's likely no one will notice. All 4.10 and 4.11 clusters currently have a clear path toward relatively recent 4.10.z or 4.11.z with no more than one risk to be evaluated.

This is a clone of issue OCPBUGS-1427. The following is the description of the original issue:

Description of problem:

Jump looks the worst on gcp, but looking closer Azure and AWS both jumped as well just not as high.

Disruption data indicates that the image registry on GCP was averaging around 30-40 seconds of disruption during an upgrade, until Aug 27th when it jumped to 125-135 seconds and has remained there ever since.

We see similar spikes in ingress-to-console and ingress-to-oauth. NOTE: image registry backend is also behind ingress, so all three are ingress related disruption.

https://datastudio.google.com/s/uBC4zuBFdTE

These charts show the problem on Aug 27 for registry, ingress to console, and ingress to oauth.

sdn network type appears unaffected.

Something merged Aug 26-27 that caused a significant change for anything behind ingress using ovn on gcp.

Description of problem:
When the user selects Serverless as an import strategy and tried to import a Devfile, the import fails because of an invalid Deployment.

Could reproduce this already in 4.11, but its even more prominent in 4.12 when the console automatically selects the resource type serverless when the Serverless operator is installed.

Version-Release number of selected component (if applicable):
Works on 4.10
Failed on 4.11 and 4.12 master

How reproducible:
Always

Steps to Reproduce:
1. Install and setup Serverless operator
1. Switch to dev perspective, navigate to add > import from git
3. Enter a non-Devfile git URL like https://github.com/jerolimov/nodeinfo
4. On 4.11 select resource type Serverless (on 4.12 this should be selected automatically)
5. Update the git URL to a repo with a Devfile like https://github.com/nodeshift-starters/devfile-sample
6. Press create

Actual results:
Import fails with error:

Error "Invalid value: "": name part must be non-empty" for field "spec.template.labels".

Expected results:
Devfile should be imported

Additional info:

Description of problem:

oc --context build02 get clusterversion
NAME      VERSION       AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.12.0-ec.1   True        False         45h     Error while reconciling 4.12.0-ec.1: the cluster operator kube-controller-manager is degraded

oc --context build02 get co kube-controller-manager
NAME                      VERSION       AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
kube-controller-manager   4.12.0-ec.1   True        False         True       2y87d   GarbageCollectorDegraded: error fetching rules: Get "https://thanos-querier.openshift-monitoring.svc:9091/api/v1/rules": dial tcp 172.30.153.28:9091: connect: cannot assign requested address

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1.
2.
3.

Actual results:

Expected results:

Additional info:

build02 is a build farm cluster in CI production.
I can provide credentials to access the cluster if needed.

Description of problem:

Alert actions are not triggering modal from where storage cluster can be expanded.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

1/1

Steps to Reproduce:

1. Fill up a storage cluster to 80%
2. Alert is seen in cluster dashboard.
3. Click the Add Capacity button

Actual results:

Modal is not launched.

Expected results:

Modal should be launched.

Additional info:

 

Description of problem:

console.openshift.io/use-i18n false in v1alpha API is converted to "" in the v1 APi, which is not a valid value for the enum type declared in the code. 

Version-Release number of selected component (if applicable):

 4.12.0-0.nightly-2022-09-25-071630

How reproducible:

Always

Steps to Reproduce:

1. Load a dynamic plugin with v1alpha API console.openshift.io/use-i18n set to 'false'
2. In the v1 API the {"spec":{"i18n":{"loadType":""}}} loadType is set to empty string, which is not a valid value defined here: https://github.com/jhadvig/api/blob/22d69793277ffeb618d642724515f249262959a5/console/v1/types_console_plugin.go#L46
https://github.com/openshift/api/pull/1186/files# 

Actual results:

{"spec":{"i18n":{"loadType":""}}}

Expected results:

{"spec":{"i18n":{"loadType":"Lazy"}}}

Additional info:

 

https://github.com/openshift/origin/pull/27444 was intended to move the scaling test out of serial to it's own test suite, but it added it to parallel – meaning it's running in all our normal upgrade jobs, causing them to frequently fail with repeating pathological events as well as greatly increasing their run time.

See https://github.com/openshift/origin/pull/27444#discussion_r991296925 for more info

Description of problem:

We have ODF bug for it here: https://bugzilla.redhat.com/show_bug.cgi?id=2169779

Discussed in formu-storage with Hemant here:
https://redhat-internal.slack.com/archives/CBQHQFU0N/p1677085216391669

And asked to open bug for it.

This currently blocking ODF 4.13 deployment over vSphere

Version-Release number of selected component (if applicable):

 

How reproducible:

YES

Steps to Reproduce:

1. Deploy ODF 4.13 on vSphere with `thin-csi` SC
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

When multi-cluster is enabled, it possible to get in a situation where you can't cancel login. If you select a cluster you don't know the credentials for, console will remember the last cluster and repeatedly send you to the login page with no way to cancel or go back. If we decide to set the last cluster in the user's preferences, it might be possible to get stuck even if you clear cookies and localStorage.

There are similar issues logging into cluster that are hibernating. See attached video.

cc Scott Berens

Description of problem:

When trying to enable Hardware Backed Management Ports (e.g. Virtual functions) on BF2 in NIC mode OR any other MLX NICs (CX-6, CX-5) by setting the node_mgmt_port_netdev_flags flags to a VF in the CNO; then OVN-K Node will crash.

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Always

Steps to Reproduce:

Start by enabling OvS HWOL and setting sriovnetworknodepolicy
https://docs.openshift.com/container-platform/4.11/networking/hardware_networks/configuring-hardware-offloading.html
1. Scale down CNO: oc scale --replicas=0 deploy/network-operator -n openshift-network-operator
2. Make changes to OVN-K node: oc edit daemonsets ovnkube-node -n openshift-ovn-kubernetes
    a. Find "node_mgmt_port_netdev_flags=" and replace it with something like this:
          node_mgmt_port_netdev_flags=
          if [[ ${K8S_NODE} != *"master"* ]]; then
                node_mgmt_port_netdev_flags="--ovnkube-node-mgmt-port-netdev=ens1f0v0"
          fi
     b. Additionally you have to add the "node_mgmt_port_netdev_flags"  to the " exec /usr/bin/ovnkube --init-node "${K8S_NODE}"" call in the same script. Since this is missing.
3. Save the edit.
4. Observe OVN-K node on baremetal worker nodes.

Actual results:

I0822 14:21:56.250285  496356 ovs.go:204] Exec(3): stderr: ""
I0822 14:21:56.250290  496356 node.go:310] Detected support for port binding with external IDs
I0822 14:21:56.250516  496356 management-port-dpu.go:181] Setup management port dpu host: ens1f0v0
F0822 14:21:56.250568  496356 ovnkube.go:133] failed to set management port name. file exists

Workaround is to go to the node and run this command: sudo ovs-vsctl del-port br-int ovn-k8s-mp0

Expected results:

There should not be any errors when changing node_mgmt_port_netdev_flags to a valid value.

Additional info:

Reported here: https://github.com/ovn-org/ovn-kubernetes/pull/3160
Discussed briefly here: https://issues.redhat.com/browse/OCPBUGS-4098
Fixed Upstream here: https://github.com/ovn-org/ovn-kubernetes/pull/3251

Description of problem:

vSphere privilege checking failing when providing user-defined folder and/or resource pool

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-08-30-054458

How reproducible:

consistently

Steps to Reproduce:

1. Provide pre-existing folder and/or resource pool to the install-config
2. Perform an installation with an account with read only privileges on the datacenter and cluster
3. The installer will fail with missing privileges for the cluster and datacenter.  When a pre-existing folder and resource pool are defined, the account can hold read only privileges on the datacenter and cluster .

Actual results:

Installer reports missing privileges

Expected results:

Installer should succeed

Additional info:

 

Description of problem:

The samples operator needs to update it's imagestreams to use the Jenkins 4.12 release.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

Customer is not able anymore to provision new baremetal nodes in 4.10.35 using the same rootDeviceHints used in 4.10.10.
Customer uses HP DL360 Gen10, with exteranal SAN storage that is seen by the system as a multipath device. Latest IPA versions are implementing some changes to avoid wiping shared disks and this seems to affect what we should provide as rootDeviceHints.
They used to put /dev/sda as rootDeviceHints, in 4.10.35 it doesn't make the IPA write the image to the disk anymore because it sees the disk as part of a multipath device, we tried using the on top multipath device /dev/dm-0, the system is then able to write the image to the disk but then it gets stuck when it tried to issue a partprobe command, rebooting the systems to boot from the disk does not seem to help complete the provisioning, no workaround so far.

 

Version-Release number of selected component (if applicable):

 

How reproducible:

by trying to provisioning a baremetal node with a multipath device.

Steps to Reproduce:

1. Create a new BMH using a multipath device as rootDeviceHints
2.
3.

Actual results:

The node does not get provisioned

Expected results:

the node gets provisioned correctly

Additional info:

 

Description of problem:

Disconnected IPI OCP 4.11.5 cluster install on baremetal fails when hostname of master nodes does not include "master"    

Version-Release number of selected component (if applicable): 4.11.5

How reproducible:  Perform disconnected IPI install of OCP 4.11.5 on bare metal with master nodes that do not contain the text "master"

Steps to Reproduce:

Perform disconnected IPI install of OCP 4.11.5 on bare metal with master nodes that do not contain the text "master"

Actual results: master nodes do come up.

Expected results: master nodes should come up despite that the text "master" is not in their hostname.

Additional info:

Disconnected IPI OCP 4.11.5 cluster install on baremetal fails when hostname of master nodes does not include "master"    

My cust reinstall new cluster using the fix here . But they have the exact same issue. The metal3 pod have  PROVISIONING_MACS value  empty.  Can we work together with them to understand why the new code fix https://github.com/openshift/cluster-baremetal-operator/commit/76bd6bc461b30a6a450f85a42e492a0933178aee is not working.

cat metal3-static-ip-set/metal3-static-ip-set/logs/current.log
2022-09-27T14:19:38.140662564Z + '[' -z 10.17.199.3/27 ']'
2022-09-27T14:19:38.140662564Z + '[' -z '' ']'
2022-09-27T14:19:38.140662564Z + '[' -n '' ']'
2022-09-27T14:19:38.140722345Z ERROR: Could not find suitable interface for "10.17.199.3/27"
2022-09-27T14:19:38.140726312Z + '[' -n '' ']'
2022-09-27T14:19:38.140726312Z + echo 'ERROR: Could not find suitable interface for "10.17.199.3/27"'
2022-09-27T14:19:38.140726312Z + exit 1

 

cat metal3-b9bf8d595-gv94k.yaml
...
initContainers:

command: /set-static-ip
env: name: PROVISIONING_IP
value: 10.17.199.3/27 name: PROVISIONING_INTERFACE name: PROVISIONING_MACS <------------------------- missing MACS
image: quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:4f04793bd109ecba2dfe43be93dc990ac5299272482c150bd5f2eee0f80c983b
imagePullPolicy: IfNotPresent
name: metal3-static-ip-set
.... 
  • omc logs machine-api-controllers-6b9ffd96cd-grh6l -c nodelink-controller  -n openshift-machine-api
    2022-09-21T16:13:43.600517485Z I0921 16:13:43.600513       1 nodelink_controller.go:408] Finding machine from node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca"
    2022-09-21T16:13:43.600521381Z I0921 16:13:43.600517       1 nodelink_controller.go:425] Finding machine from node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca" by ProviderID
    2022-09-21T16:13:43.600525225Z W0921 16:13:43.600521       1 nodelink_controller.go:427] Node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca" has no providerID
    2022-09-21T16:13:43.600528917Z I0921 16:13:43.600524       1 nodelink_controller.go:448] Finding machine from node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca" by IP
    2022-09-21T16:13:43.600532711Z I0921 16:13:43.600529       1 nodelink_controller.go:453] Found internal IP for node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca": "10.17.192.33"
    2022-09-21T16:13:43.600551289Z I0921 16:13:43.600544       1 nodelink_controller.go:477] Matching machine not found for node "blocp-1-106-m-0.c106-1.sc.evolhse.hydro.qc.ca" with internal IP "10.17.192.33"

From @dtantsur WIP PR: https://github.com/openshift/cluster-baremetal-operator/pull/299

Customer is waiting for this fix. The previous code change don't fix customer situation.

Please refer to this slack thread :https://coreos.slack.com/archives/CFP6ST0A3/p1664215102459219

This is a clone of issue OCPBUGS-3085. The following is the description of the original issue:

Description of problem:

IPI on BareMetal Dual stack deployment failed and Bootstrap timed out before completion

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-25-210451

How reproducible:

Always

Steps to Reproduce:

1. Deploy IPI on BM using Dual stack 
2.
3.

Actual results:

Deployment failed

Expected results:

Should pass

Additional info:

Same deployment works fine on 4.11

We rely on the user providing accurate information about the MAC addresses in the agent-config, because at the point we read it we haven't seen the hosts yet. However, if the user gets this wrong then chaos may ensue.

Once inventory is available, we should validate that the user has not:

  • Specified MAC addresses that belong to two different agents in the same host config; nor
  • Specified MAC addresses that belong to the same agent in two different host configs

and fail the install if they have.

This is a clone of issue OCPBUGS-4973. The following is the description of the original issue:

Description of problem:

Config OAuth with htpasswd in the hostedcluster doesn't work as expected.

Version-Release number of selected component (if applicable):

 

How reproducible:

enable OAuth htpasswd in hostedcluster

Steps to Reproduce:

1. create passwd file for user init by htpasswd
```
htpasswd -cbB .passwd helitest helitest

oc create secret generic testuser --from-file=htpasswd=.passwd  -n clusters ``` 

2. edit hostedcluster.yaml
```
spec:
  configuration:
    oauth:
      identityProviders:
      - htpasswd:
          fileData:
            name: testuser
        mappingMethod: claim
        name: htpasswd
        type: HTPasswd
```
3. oc login hostedcluster apiserver

$ oc login https://ac0be21b169ff4399b6a2044388c38cf-5789e1b174d7424b.elb.us-east-2.amazonaws.com:6443 --username=testuser --password=testuser
The server uses a certificate signed by an unknown authority.
You can bypass the certificate check, but any data you send to the server could be intercepted by others.
Use insecure connections? (y/n): y


Login failed (401 Unauthorized) 

Actual results:

oc login with error : "Login failed (401 Unauthorized) "

Expected results:

oc login successfully.

Additional info:

# check configmap of oauth 
$ oc get cm -n clusters-demo-02 oauth-openshift -oyaml
...
    oauthConfig:
      alwaysShowProviderSelection: false
      assetPublicURL: ""
      grantConfig:
        method: deny
        serviceAccountMethod: prompt
      identityProviders: []
      loginURL: https://ac0be21b169ff4399b6a2044388c38cf-5789e1b174d7424b.elb.us-east-2.amazonaws.com:6443
      
---> seems `identityProviders` is not synced correctly ? 

This is a clone of issue OCPBUGS-7102. The following is the description of the original issue:

Description of problem:

https://github.com/openshift/operator-framework-olm/blob/7ec6b948a148171bd336750fed98818890136429/staging/operator-lifecycle-manager/pkg/controller/operators/olm/plugins/downstream_csv_namespace_labeler_plugin_test.go#L309

has a dependency on creation of a next-version release branch.

 

Version-Release number of selected component (if applicable):

4.13

How reproducible:

 

Steps to Reproduce:

1. clone operator-framework/operator-framework-olm
2. make unit/olm
3. deal with a really bumpy first-time kubebuilder/envtest install experience
4. profit

 

 

Actual results:

error

Expected results:

pass

Additional info:

 

 

Description of problem: Knative tests were disabled due to https://issues.redhat.com/browse/OCPBUGS-190  to unblock the queue and should be enabled back again

https://coreos.slack.com/archives/C6A3NV5J9/p1660659719046909 

https://github.com/openshift/console/pull/11956#discussion_r948075848 

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1.
2.
3.

Actual results:

Expected results:

Additional info:

This is a clone of issue OCPBUGS-723. The following is the description of the original issue:

Description of problem:
I have a customer who created clusterquota for one of the namespace, it got created but the values were not reflecting under limits or not displaying namespace details.
~~~
$ oc describe AppliedClusterResourceQuota
Name: test-clusterquota
Created: 19 minutes ago
Labels: size=custom
Annotations: <none>
Namespace Selector: []
Label Selector:
AnnotationSelector: map[openshift.io/requester:system:serviceaccount:application-service-accounts:test-sa]
Scopes: NotTerminating
Resource Used Hard
-------- ---- ----
~~~

WORKAROUND: They recreated the clusterquota object (cache it off, delete it, create new) after which it displayed values as expected.

In the past, they saw similar behavior on their test cluster, there it was heavily utilized the etcd DB was much larger in size (>2.5Gi), and had many more objects (at that time, helm secrets were being cached for all deployments, and keeping a history of 10, so etcd was being bombarded).

This cluster the same "symptom" was noticed however etcd was nowhere near that in size nor the amount of etcd objects and/or helm cached secrets.

Version-Release number of selected component (if applicable): OCP 4.9

How reproducible: Occurred only twice(once in test and in current cluster)

Steps to Reproduce:
1. Create ClusterQuota
2. Check AppliedClusterResourceQuota
3. The values and namespace is empty

Actual results: ClusterQuota should display the values

Expected results: ClusterQuota not displaying values

This is a clone of issue OCPBUGS-6175. The following is the description of the original issue:

Description of problem:

When the cluster is configured with Proxy the swift client in the image registry operator is not using the proxy to authenticate with OpenStack, so it's unable to reach the OpenStack API. This issue became evident since recently the support was added to not fallback to cinder in case swift is available[1].

[1]https://github.com/openshift/cluster-image-registry-operator/pull/819

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1. Deploy a cluster with proxy and restricted installation
2. 
3.

Actual results:

 

Expected results:

 

Additional info:

 

This is a clone of issue OCPBUGS-4955. The following is the description of the original issue:

Description of problem:

Customer needs "IfNotPresent" ImagePullPolicy set for bundle unpacker images which reference iamges by digest. Currently, policy is set to "Always" no matter what.

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1.Install an operator via bundle referencing an image by digest
2.Check the bundle unpacker pod

Actual results:

Image pull policy will be set to "Always"

Expected results:

Image pull policy will be set to "IfNotPresent" when pulling via digest

Additional info:

 

This is a clone of issue OCPBUGS-3405. The following is the description of the original issue:

In case it should be used for publishing artifacts in CI jobs.

Look into to see if the following things are leaked:

  • pull secret
  • ssh key
  • potentially values in journal logs

This is a clone of issue OCPBUGS-11004. The following is the description of the original issue:

This is a clone of issue OCPBUGS-8349. The following is the description of the original issue:

Description of problem:

On a freshly installed cluster, the control-plane-machineset-operator begins rolling a new master node, but the machine remains in a Provisioned state and never joins as a node.

Its status is:
Drain operation currently blocked by: [{Name:EtcdQuorumOperator Owner:clusteroperator/etcd}]

The cluster is left in this state until an admin manually removes the stuck master node, at which point a new master machine is provisioned and successfully joins the cluster.

Version-Release number of selected component (if applicable):

4.12.4

How reproducible:

Observed at least 4 times over the last week, but unsure on how to reproduce.

Actual results:

A master node remains in a stuck Provisioned state and requires manual deletion to unstick the control plane machine set process.

Expected results:

No manual interaction should be necessary.

Additional info:

 

Description of problem:

The current version of openshift's corendns is based on Kubernetes 1.24 packages.  OpenShift 4.12 is based on Kubernetes 1.25.  

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. Check https://github.com/openshift/coredns/blob/release-4.12/go.mod 

Actual results:

Kubernetes packages (k8s.io/api, k8s.io/apimachinery, and k8s.io/client-go) are at version v0.24.0.

Expected results:

Kubernetes packages are at version v0.25.0 or later.

Additional info:

Using old Kubernetes API and client packages brings risk of API compatibility issues.

Description of problem:
Kebab menu for helm repository is showing inconsistent behavior

Version-Release number of selected component (if applicable): 4.12

How reproducible: Always

Steps to Reproduce:
1. Create some helm chart repository
2. Go to the Helm page and switch to the repositories tab
3. Open kebab menu for different repos

Actual results:
Menus are overlapping

Expected results:
The menu should work properly; one menu should close before opening a new one

Additional info:
Video has been added for the reference

Description of problem:

revert "force cert rotation every couple days for development" in 4.12

We want short expiry times during development and long expiry times when we ship.

--- Additional comment from Eric Paris on 2020-04-02 19:57:29 CEST ---

This bug has been set to target the 4.5.0 release without specifying a severity. As part of triage when determining the priority of bugs a severity should be specified. Since these bugs have no been properly triaged I am removing the target release. Teams will need to add a severity before deferring these bugs again.

--- Additional comment from Michal Fojtik on 2020-05-12 12:45:25 CEST ---

This bug hasn't had any activity in the last 30 days. Maybe the problem got resolved, was a duplicate of something else, or became less pressing for some reason - or maybe it's still relevant but just hasn't been looked at yet.

As such, we're marking this bug as "LifecycleStale" and decreasing the severity. 

If you have further information on the current state of the bug, please update it, otherwise this bug will be automatically closed in 7 days. The information can be, for example, that the problem still occurs, that you still want the feature, that more information is needed, or that the bug is (for whatever reason) no longer relevant.

--- Additional comment from Standa Laznicka on 2020-05-12 14:53:12 CEST ---

you don't really want to close this

--- Additional comment from Stefan Schimanski on 2020-05-19 13:11:00 CEST ---

Waiting for master to open. We will fix it then on the release branch.

--- Additional comment from Stefan Schimanski on 2020-06-18 12:23:34 CEST ---

Will be done when 4.6 branches from master.

--- Additional comment from Michal Fojtik on 2020-07-09 14:46:02 CEST ---

Stefan is PTO, adding UpcomingSprint to his bugs to fulfill the duty.

--- Additional comment from Michal Fojtik on 2020-08-24 15:12:08 CEST ---

This bug hasn't had any activity in the last 30 days. Maybe the problem got resolved, was a duplicate of something else, or became less pressing for some reason - or maybe it's still relevant but just hasn't been looked at yet. As such, we're marking this bug as "LifecycleStale" and decreasing the severity/priority. If you have further information on the current state of the bug, please update it, otherwise this bug can be closed in about 7 days. The information can be, for example, that the problem still occurs, that you still want the feature, that more information is needed, or that the bug is (for whatever reason) no longer relevant.

--- Additional comment from Michal Fojtik on 2020-08-31 15:59:33 CEST ---

This bug hasn't had any activity 7 days after it was marked as LifecycleStale, so we are closing this bug as WONTFIX. If you consider this bug still valuable, please reopen it or create new bug.

--- Additional comment from Michal Fojtik on 2020-08-31 17:00:25 CEST ---

The LifecycleStale keyword was removed because the bug got commented on recently.
The bug assignee was notified.

--- Additional comment from Stefan Schimanski on 2020-09-11 13:00:27 CEST ---

This is waiting for Eric Paris to stop fast forwarding release-4.6 from master.

--- Additional comment from Michal Fojtik on 2020-10-30 11:12:07 CET ---

This bug hasn't had any activity in the last 30 days. Maybe the problem got resolved, was a duplicate of something else, or became less pressing for some reason - or maybe it's still relevant but just hasn't been looked at yet. As such, we're marking this bug as "LifecycleStale" and decreasing the severity/priority. If you have further information on the current state of the bug, please update it, otherwise this bug can be closed in about 7 days. The information can be, for example, that the problem still occurs, that you still want the feature, that more information is needed, or that the bug is (for whatever reason) no longer relevant. Additionally, you can add LifecycleFrozen into Keywords if you think this bug should never be marked as stale. Please consult with bug assignee before you do that.

--- Additional comment from Nick Stielau on 2021-01-20 18:49:09 CET ---

Can we get some context on why this is blocker+?  Would we further delay the release if we don't get a fix in for this?

--- Additional comment from Stefan Schimanski on 2021-03-16 17:28:08 CET ---

--- Additional comment from Eric Paris on 2021-06-08 14:00:16 CEST ---

This bug sets blocker+ without setting a Target Release. This is an invalid state as it is impossible to determine what is being blocked. Please be sure to set Priority, Severity, and Target Release before you attempt to set blocker+

--- Additional comment from Michal Fojtik on 2021-06-10 10:49:36 CEST ---

This is a blocker? until we have Target Release 4.9 (it is a blocker+ for 4.9).

--- Additional comment from Wally on 2021-06-11 15:14:26 CEST ---

Setting blocker- until next week to clear reports heading to code freeze.  Will reset once 4.9 opens.

--- Additional comment from Wally on 2021-08-31 19:26:13 UTC ---

Setting blocker- until next week to clear reports heading to code freeze.  Will reset once 4.10 opens.

--- Additional comment from Michal Fojtik on 2022-02-03 21:53:15 UTC ---

** A NOTE ABOUT USING URGENT **

This BZ has been set to urgent severity and priority. When a BZ is marked urgent priority Engineers are asked to stop whatever they are doing, putting everything else on hold.
Please be prepared to have reasonable justification ready to discuss, and ensure your own and engineering management are aware and agree this BZ is urgent. Keep in mind, urgent bugs are very expensive and have maximal management visibility.

NOTE: This bug was automatically assigned to an engineering manager with the severity reset to *unspecified* until the emergency is vetted and confirmed. Please do not manually override the severity.

** INFORMATION REQUIRED **

Please answer these questions before escalation to engineering:

1. Has a link to must-gather output been provided in this BZ? We cannot work without. If must-gather fails to run, attach all relevant logs and provide the error message of must-gather.
2. Give the output of "oc get clusteroperators -o yaml".
3. In case of degraded/unavailable operators, have all their logs and the logs of the operands been analyzed [yes/no]
4. List the top 5 relevant errors from the logs of the operators and operands in (3).
5. Order the list of degraded/unavailable operators according to which is likely the cause of the failure of the other, root-cause at the top.
6. Explain why (5) is likely the right order and list the information used for that assessment.
7. Explain why Engineering is necessary to make progress.

--- Additional comment from Wally on 2022-02-09 20:11:25 UTC ---

Setting blocker- for now but will add reminder and keep in my queue for visibility.

--- Additional comment from Red Hat Bugzilla on 2022-05-09 08:32:21 UTC ---

Account disabled by LDAP Audit for extended failure

--- Additional comment from OpenShift Automated Release Tooling on 2022-06-24 01:06:13 UTC ---

Elliott changed bug status from MODIFIED to ON_QA.
This bug is expected to ship in the next 4.11 release.

--- Additional comment from Ke Wang on 2022-06-24 15:24:03 UTC ---

To verify the bug, refer to https://bugzilla.redhat.com/show_bug.cgi?id=1921139#c6

--- Additional comment from OpenShift BugZilla Robot on 2022-06-25 12:40:12 UTC ---

Bugfix included in accepted release 4.11.0-0.nightly-2022-06-25-081133
Bug will not be automatically moved to VERIFIED for the following reasons:
- PR openshift/cluster-kube-apiserver-operator#1307 not approved by QA contact

This bug must now be manually moved to VERIFIED by dpunia@redhat.com

--- Additional comment from Deepak Punia on 2022-06-27 08:20:33 UTC ---

Below is the steps to verify this bug:

# oc adm release info --commits registry.ci.openshift.org/ocp/release:4.11.0-0.nightly-2022-06-25-081133|grep -i cluster-kube-apiserver-operator
  cluster-kube-apiserver-operator                https://github.com/openshift/cluster-kube-apiserver-operator                7764681777edfa3126981a0a1d390a6060a840a3

# git log --date local --pretty="%h %an %cd - %s" 776468 |grep -i "#1307"
08973b820 openshift-ci[bot] Thu Jun 23 22:40:08 2022 - Merge pull request #1307 from tkashem/revert-cert-rotation

# oc get clusterversions.config.openshift.io 
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-06-25-081133   True        False         64m     Cluster version is 4.11.0-0.nightly-2022-06-25-081133

$ cat scripts/check_secret_expiry.sh
FILE="$1"
if [ ! -f "$1" ]; then
  echo "must provide \$1" && exit 0
fi
export IFS=$'\n'
for i in `cat "$FILE"`
do
  if `echo "$i" | grep "^#" > /dev/null`; then
    continue
  fi
  NS=`echo $i | cut -d ' ' -f 1`
  SECRET=`echo $i | cut -d ' ' -f 2`
  rm -f tls.crt; oc extract secret/$SECRET -n $NS --confirm > /dev/null
  echo "Check cert dates of $SECRET in project $NS:"
  openssl x509 -noout --dates -in tls.crt; echo
done

$ cat certs.txt
openshift-kube-controller-manager-operator csr-signer-signer
openshift-kube-controller-manager-operator csr-signer
openshift-kube-controller-manager kube-controller-manager-client-cert-key
openshift-kube-apiserver-operator aggregator-client-signer
openshift-kube-apiserver aggregator-client
openshift-kube-apiserver external-loadbalancer-serving-certkey
openshift-kube-apiserver internal-loadbalancer-serving-certkey
openshift-kube-apiserver service-network-serving-certkey
openshift-config-managed kube-controller-manager-client-cert-key
openshift-config-managed kube-scheduler-client-cert-key
openshift-kube-scheduler kube-scheduler-client-cert-key

Checking the Certs,  they are with one day expiry times, this is as expected.
# ./check_secret_expiry.sh certs.txt
Check cert dates of csr-signer-signer in project openshift-kube-controller-manager-operator:
notBefore=Jun 27 04:41:38 2022 GMT
notAfter=Jun 28 04:41:38 2022 GMT

Check cert dates of csr-signer in project openshift-kube-controller-manager-operator:
notBefore=Jun 27 04:52:21 2022 GMT
notAfter=Jun 28 04:41:38 2022 GMT

Check cert dates of kube-controller-manager-client-cert-key in project openshift-kube-controller-manager:
notBefore=Jun 27 04:52:26 2022 GMT
notAfter=Jul 27 04:52:27 2022 GMT

Check cert dates of aggregator-client-signer in project openshift-kube-apiserver-operator:
notBefore=Jun 27 04:41:37 2022 GMT
notAfter=Jun 28 04:41:37 2022 GMT

Check cert dates of aggregator-client in project openshift-kube-apiserver:
notBefore=Jun 27 04:52:26 2022 GMT
notAfter=Jun 28 04:41:37 2022 GMT

Check cert dates of external-loadbalancer-serving-certkey in project openshift-kube-apiserver:
notBefore=Jun 27 04:52:26 2022 GMT
notAfter=Jul 27 04:52:27 2022 GMT

Check cert dates of internal-loadbalancer-serving-certkey in project openshift-kube-apiserver:
notBefore=Jun 27 04:52:49 2022 GMT
notAfter=Jul 27 04:52:50 2022 GMT

Check cert dates of service-network-serving-certkey in project openshift-kube-apiserver:
notBefore=Jun 27 04:52:28 2022 GMT
notAfter=Jul 27 04:52:29 2022 GMT

Check cert dates of kube-controller-manager-client-cert-key in project openshift-config-managed:
notBefore=Jun 27 04:52:26 2022 GMT
notAfter=Jul 27 04:52:27 2022 GMT

Check cert dates of kube-scheduler-client-cert-key in project openshift-config-managed:
notBefore=Jun 27 04:52:47 2022 GMT
notAfter=Jul 27 04:52:48 2022 GMT

Check cert dates of kube-scheduler-client-cert-key in project openshift-kube-scheduler:
notBefore=Jun 27 04:52:47 2022 GMT
notAfter=Jul 27 04:52:48 2022 GMT
# 

# cat check_secret_expiry_within.sh
#!/usr/bin/env bash
# usage: ./check_secret_expiry_within.sh 1day # or 15min, 2days, 2day, 2month, 1year
WITHIN=${1:-24hours}
echo "Checking validity within $WITHIN ..."
oc get secret --insecure-skip-tls-verify -A -o json | jq -r '.items[] | select(.metadata.annotations."auth.openshift.io/certificate-not-after" | . != null and fromdateiso8601<='$( date --date="+$WITHIN" +%s )') | "\(.metadata.annotations."auth.openshift.io/certificate-not-before")  \(.metadata.annotations."auth.openshift.io/certificate-not-after")  \(.metadata.namespace)\t\(.metadata.name)"'

# ./check_secret_expiry_within.sh 1day
Checking validity within 1day ...
2022-06-27T04:41:37Z  2022-06-28T04:41:37Z  openshift-kube-apiserver-operator	aggregator-client-signer
2022-06-27T04:52:26Z  2022-06-28T04:41:37Z  openshift-kube-apiserver	aggregator-client
2022-06-27T04:52:21Z  2022-06-28T04:41:38Z  openshift-kube-controller-manager-operator	csr-signer
2022-06-27T04:41:38Z  2022-06-28T04:41:38Z  openshift-kube-controller-manager-operator	csr-signer-signer

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

While backporting to 4.12 the node healthz server (#1570), a number of functions related to checking stale ovs ports (checkForStaleOVSInternalPortscheckForStaleOVSRepresentorInterfacescheckForStaleOVSInterfaces) were moved to pkg/node/openflow_manager.go and their related tests were left in pkg/node/healthcheck_test.go. In 4.13, we have everything under pkg/network-controller-manager. To keep consistency, let's move these to pkg/node/node.go and pkg/node/node_test.go

This is a clone of issue OCPBUGS-4656. The following is the description of the original issue:

Description of problem:

`/etc/hostname` may exist, but be empty. `vsphere-hostname` service should check that the file is not empty instead of just that it exists.

OKD's machine-os-content starting from F37 has an empty /etc/hostname file, which breaks joining workers in vsphere IPI

Version-Release number of selected component (if applicable):


How reproducible:

Always

Steps to Reproduce:

1. Install OKD w/ workers on vsphere
2.
3.

Actual results:


Workers get hostname resolved using NM

Expected results:


Workers get hostname resolved using vmtoolsd

Additional info:


Description of problem:

Each LB created for a Service type LoadBalancer results in 1 client rule and <# of public subnets> health rules being created.  The rules per SG quota in AWS is quite small; 60 by default, and 200 hard max.  OCP has about 40 rules OOTB. Assuming an HA cluster in 3 AZs, that is 4 rules per LB.  With default AWS quota, only ~5 LBs can be create and with the hard max of 200, only ~40 LBs can be created.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1.  Create Service type LoadBalancer and observe increase in master-sg and worker-sg rules sets
2.
3.

Actual results:

4 rules are created

Expected results:

1 rules is created when the client rule is a superset of the per-subnet health rules

Additional info:

This ~4x the number of Services of type LoadBalancer.  This is required for Hypershift.

Description of problem:

Clusters created with platform 'vsphere' in the install-config end up as type 'BareMetal' in the infrastructure CR.

Version-Release number of selected component (if applicable):

4.12.3

How reproducible:

100%

Steps to Reproduce:

1. Create a cluster through the agent installer with platform: vsphere in the install-config
2. oc get infrastructure cluster -o jsonpath='{.status.platform}' 

Actual results:

BareMetal

Expected results:

VSphere

Additional info:

The platform type is not being case converted ("vsphere" -> "VSphere") when constructing the AgentClusterInstall CR. When read by the assisted-service client, the platform reads as unknown and therefore the platform field is left blank when the Cluster object is created in the assisted API. Presumably that results in the correct default platform for the topology: None for SNO, BareMetal for everything else, but never VSphere. Since the platform VIPs are passed through a non-platform-specific API in assisted, everything worked but the resulting cluster would have the BareMetal platform.

This is a clone of issue OCPBUGS-3316. The following is the description of the original issue:

Description of problem:

Branch name in repository pipelineruns list view should match the actual github branch name.

Version-Release number of selected component (if applicable):

4.11.z

How reproducible:

alwaus

Steps to Reproduce:

1. Create a repository
2. Trigger the pipelineruns by push or pull request event on the github 

Actual results:

Branch name contains "refs-heads-" prefix in front of the actual branch name eg: "refs-heads-cicd-demo" (cicd-demo is the branch name)

Expected results:

Branch name should be the acutal github branch name. just `cicd-demo`should be shown in the branch column.

 

Additional info:
Ref: https://coreos.slack.com/archives/CHG0KRB7G/p1667564311865459

Description of problem:

some upgrade ci jobs from 4.11.z to 4.12 nightly build are failed, because system unit machine-config-daemon-update-rpmostree-via-container is failed

e.g. job https://qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/view/gs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-aws-ipi-proxy-p1/1579169944476585984

omg get mcp
NAME    CONFIG                                            UPDATED  UPDATING  DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT  DEGRADEDMACHINECOUNT  AGE
worker  rendered-worker-6e18de1272fad7a5ca1529941e3ceaed  False    True      True      3             0                  0                    1                     3h53m
master  rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4  False    True      True      3             0                  0                    1                     3h53m 

check issued node

omg get node/ip-10-0-57-74.us-east-2.compute.internal -o yaml|yq -y '.metadata.annotations'
cloud.network.openshift.io/egress-ipconfig: '[{"interface":"eni-0f6de21569b5b65c8","ifaddr":{"ipv4":"10.0.48.0/20"},"capacity":{"ipv4":14,"ipv6":15}}]'
csi.volume.kubernetes.io/nodeid: '{"ebs.csi.aws.com":"i-01a34f6b5f2cd1e41"}'
machine.openshift.io/machine: openshift-machine-api/ci-op-kb95kxx9-2a438-r6z94-master-2
machineconfiguration.openshift.io/controlPlaneTopology: HighlyAvailable
machineconfiguration.openshift.io/currentConfig: rendered-master-065664319cfbaee64277097d49a8a5a6
machineconfiguration.openshift.io/desiredConfig: rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4
machineconfiguration.openshift.io/desiredDrain: drain-rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4
machineconfiguration.openshift.io/lastAppliedDrain: drain-rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4
machineconfiguration.openshift.io/reason: 'error running systemd-run --unit machine-config-daemon-update-rpmostree-via-container
  --collect --wait -- podman run --authfile /var/lib/kubelet/config.json --privileged
  --pid=host --net=host --rm -v /:/run/host quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661
  rpm-ostree ex deploy-from-self /run/host: Running as unit: machine-config-daemon-update-rpmostree-via-container.service


  Finished with result: exit-code


  Main processes terminated with: code=exited/status=125


  Service runtime: 2min 52ms


  CPU time consumed: 144ms


  : exit status 125'
machineconfiguration.openshift.io/state: Degraded
volumes.kubernetes.io/controller-managed-attach-detach: 'true' 

check mcd log on issued node

omg get pod -n openshift-machine-config-operator  -o json | jq -r '.items[]|select(.spec.nodeName=="ip-10-0-57-74.us-east-2.compute.internal")|.metadata.name' | grep daemon
machine-config-daemon-znbvf

2022-10-09T22:12:58.797891917Z I1009 22:12:58.797821  179598 update.go:1917] Updating OS to layered image quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661
2022-10-09T22:12:58.797891917Z I1009 22:12:58.797846  179598 rpm-ostree.go:447] Running captured: rpm-ostree --version
2022-10-09T22:12:58.815829171Z I1009 22:12:58.815800  179598 update.go:2068] rpm-ostree is not new enough for layering; forcing an update via container
2022-10-09T22:12:58.817577513Z I1009 22:12:58.817555  179598 update.go:2053] Running: systemd-run --unit machine-config-daemon-update-rpmostree-via-container --collect --wait -- podman run --authfile /var/lib/kubelet/config.json --privileged --pid=host --net=host --rm -v /:/run/host quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661 rpm-ostree ex deploy-from-self /run/host 
...
2022-10-09T22:15:00.831959313Z E1009 22:15:00.831949  179598 writer.go:200] Marking Degraded due to: error running systemd-run --unit machine-config-daemon-update-rpmostree-via-container --collect --wait -- podman run --authfile /var/lib/kubelet/config.json --privileged --pid=host --net=host --rm -v /:/run/host quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661 rpm-ostree ex deploy-from-self /run/host: Running as unit: machine-config-daemon-update-rpmostree-via-container.service
2022-10-09T22:15:00.831959313Z Finished with result: exit-code
2022-10-09T22:15:00.831959313Z Main processes terminated with: code=exited/status=125
2022-10-09T22:15:00.831959313Z Service runtime: 2min 52ms
2022-10-09T22:15:00.831959313Z CPU time consumed: 144ms
2022-10-09T22:15:00.831959313Z : exit status 125

Version-Release number of selected component (if applicable):

4.12

Steps to Reproduce:

upgrade cluster from 4.11.8 to 4.12.0-0.nightly-2022-10-05-053337  

Actual results:

upgrade is failed due to node is degraded, rpm-ostree update via container is failed

Expected results:

upgrade can be completed successfully

Additional info:

must-gather: https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-aws-ipi-proxy-p1/1579169944476585984/artifacts/aws-ipi-proxy-p1/gather-must-gather/artifacts/must-gather.tar

Other build logs of failed jobs

https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-aws-ipi-proxy-cco-manual-security-token-service-p1/1579200140067999744/build-log.txt

https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-azure-ipi-proxy-p1/1579094436883730432/build-log.txt

https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-azure-ipi-proxy-workers-rhcos-rhel8-p2/1578747158293647360/build-log.txt

Description of problem:

Whereabouts reconciliation is not launched when

How reproducible:

Always

Steps to Reproduce:

1. oc edit the networks object and create a net-attach-def that references whereabouts – in a conflist.

Actual results:

The reconciler is not launched.

Expected results:

The reconciler is launched.

Description of problem:

Cluster can not be installed when updating join network CIDR using v6InternalSubnet fdxx::/64 in the manifests/cluster-network-03-config.yml

Version-Release number of selected component (if applicable):

v4.12

How reproducible:

Always

Steps to Reproduce:

Using v6InternalSubnet: fd66::/48 in manifests/cluster-network-03-config.yml to install a dual stack cluster:

cp manifests/cluster-network-02-config.yml manifests/cluster-network-03-config.yml
 sed -i 's/config.openshift.io\/v1/operator.openshift.io\/v1/g' manifests/cluster-network-03-config.yml
cat > ovn_kube_config <<HEREDOC
  defaultNetwork:
    type: OVNKubernetes
    ovnKubernetesConfig:
      v6InternalSubnet: fd66::/48
HEREDOC
  sed -i $'/^status/{e cat ovn_kube_config\n}' manifests/cluster-network-03-config.yml 

Actual results:

Installation fail

Expected results:

Installation pass

Additional info:

 

Description of problem:

Duplicate notification "Getting started" would be shown on Search page 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-26-111919

How reproducible:

Always

Steps to Reproduce:

1. Login OCP as normal user, and change to developer prespective, create a new project
2. Delete the project on page (switch to Administator prespective, go to Home -> Projects page)
3. Switch to Developer prespective, and go to Search page, check the notification "Getting Started"

Actual results:

Two notification shown on page

Expected results:

Only one should exist

Additional info:

 

Description of problem:

On MicroShift, the Route API is served by kube-apiserver as a CRD. Reusing the same defaulting implementation as vanilla OpenShift through a patch to kube- apiserver is expected to resolve OCPBUGS-4189 but have no detectable effect on OCP.

Additional info:

This patch will be inert on OCP, but is implemented in openshift/kubernetes because MicroShift ingests kube-apiserver through its build-time dependency on openshift/kubernetes.

Description of problem:

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1. Go to the detail page of some Deployments with PDB connected to it
2. Click Edit PDB from the kebab menu
3. Inspect the second input box under the `Availability requirement `

Actual results: The name and aria-label attributes always show minAvailable

Expected results: They should be consistent with the first input box

Additional info:

This is a clone of issue OCPBUGS-6018. The following is the description of the original issue:

This is a public clone of OCPBUGS-3821

The MCO can sometimes render a rendered-config in the middle of an upgrade with old MCs, e.g.:

  1. the containerruntimeconfigcontroller creates a new containerruntimeconfig due to the update
  2. the template controller finishes re-creating the base configs
  3. the kubeletconfig errors long enough and doesn't finish until after 2

This will cause the render controller to create a new rendered MC that uses the OLD kubeletconfig-MC, which at best is a double reboot for 1 node, and at worst block the update and break maxUnavailable nodes per pool.

This is a clone of issue OCPBUGS-3668. The following is the description of the original issue:

Description of problem:

Installer fails to install 4.12.0-rc.0 on VMware IPI with the script that worked with prior OCP versions.
Error happens during Terraform prepare step when gathering information in the "Platform Provisioning Check". It looks like a permission issue, but we're using the VCenter administrator account. I double checked and that account has all the necessary permissions.

Version-Release number of selected component (if applicable):

OCP installer 4.12.0-rc.0
VSphere & Vcenter 7.0.3 - no pending updates

How reproducible:

always - we observed this already in the nightlies, but wanted to wait for a RC to confirm

Steps to Reproduce:

1. Try to install using the openshift-install binary

Actual results:

Fails during the preparation step

Expected results:

Installs the cluster ;)

Additional info:

This runs in our CICD pipeline, let me know if you want to need access to the full run log:
https://gitlab.consulting.redhat.com/cblum/storage-ocs-lab/-/jobs/219304

This includes the install-config.yaml, all component versions and the full debug log output

This is a clone of issue OCPBUGS-4954. The following is the description of the original issue:

Description of problem:
During the cluster destroy process for IBM Cloud IPI, failures can occur when COS Instances are deleted, but Reclamations are created for the COS deletions, and prevent cleanup of the ResourceGroup

Version-Release number of selected component (if applicable):
4.13.0 (and 4.12.0)

How reproducible:
Sporadic, it depends on IBM Cloud COS

Steps to Reproduce:
1. Create an IPI cluster on IBM Cloud
2. Delete the IPI cluster on IBM Cloud
3. COS Reclamation may be created, and can cause the destroy cluster to fail

Actual results:

time="2022-12-12T16:50:06Z" level=debug msg="Listing resource groups"
time="2022-12-12T16:50:06Z" level=debug msg="Deleting resource group \"eu-gb-reclaim-1-zc6xg\""
time="2022-12-12T16:50:07Z" level=debug msg="Failed to delete resource group eu-gb-reclaim-1-zc6xg: Resource groups with active or pending reclamation instances can't be deleted. Use the CLI commands \"ibmcloud resource service-instances --type all\" and \"ibmcloud resource reclamations\" to check for remaining instances, then delete the instances and try again."

Expected results:
Successful destroy cluster (including deletion of ResourceGroup)

Additional info:
IBM Cloud is testing a potential fix currently.

It was also identified, the destroy stages are not in a proper order.
https://github.com/openshift/installer/blob/9377cb3974986a08b531a5e807fd90a3a4e85ebf/pkg/destroy/ibmcloud/ibmcloud.go#L128-L155

Changes are being made in an attempt to resolve this along with a fix for this bug as well.

This is a clone of issue OCPBUGS-5016. The following is the description of the original issue:

Description of problem:

When editing any pipeline in the openshift console, the correct content cannot be obtained (the obtained information is the initial information).

Version-Release number of selected component (if applicable):

 

How reproducible:

100%

Steps to Reproduce:

Developer -> Pipeline -> select pipeline -> Details -> Actions -> Edit Pipeline -> YAML view -> Cancel ->  Actions -> Edit Pipeline -> YAML view 

Actual results:

displayed content is incorrect.

Expected results:

Get the content of the current pipeline, not the "pipeline create" content.

Additional info:

If cancel or save in the "Pipeline Builder" interface after "Edit Pipeline", can get the expected content.
~
Developer -> Pipeline -> select pipeline -> Details -> Actions -> Edit Pipeline -> Pipeline builder -> Cancel ->  Actions -> Edit Pipeline -> YAML view :Display resource content normally
~

Description of problem:
In a complete disconnected cluster, the dev catalog is taking too much time in loading

Version-Release number of selected component (if applicable):

How reproducible:
Always

Steps to Reproduce:
1. A complete disconnected cluster
2. In add page go to the All services page
3.

Actual results:
Taking too much time too load

Expected results:
Time taken should be reduced

Additional info:
Attached a gif for reference

Description of problem:

release-4.12 of openshift/cloud-provider-openstack is missing some commits that were backported in upstream project into the release-1.25 branch.
We should import them in our downstream fork.

How reproducible:


Steps to Reproduce:

1.
2.
3.

Actual results:


Expected results:


Additional info:


This is a clone of issue OCPBUGS-8342. The following is the description of the original issue:

This is a clone of issue OCPBUGS-8258. The following is the description of the original issue:

Invoking 'create cluster-manifests' fails when imageContentSources is missing in install-config yaml:

$ openshift-install agent create cluster-manifests
INFO Consuming Install Config from target directory
FATAL failed to write asset (Mirror Registries Config) to disk: failed to write file: open .: is a directory

install-config.yaml:

apiVersion: v1alpha1
metadata:
  name: appliance
rendezvousIP: 192.168.122.116
hosts:
  - hostname: sno
    installerArgs: '["--save-partlabel", "agent*", "--save-partlabel", "rhcos-*"]'
    interfaces:
     - name: enp1s0
       macAddress: 52:54:00:e7:05:72
    networkConfig:
      interfaces:
        - name: enp1s0
          type: ethernet
          state: up
          mac-address: 52:54:00:e7:05:72
          ipv4:
            enabled: true
            dhcp: true 

Description of problem:
ovnkube-trace fails on hypershift deployments:
https://bugzilla.redhat.com/show_bug.cgi?id=2066891#c8

getDatabaseURIs looks for pods with container ovnkube-master, and those don't exist in hypershift.

https://github.com/ovn-org/ovn-kubernetes/blob/6b8acf05cb6043ebdc42d9d36e700390baabea4a/go-controller/cmd/ovnkube-trace/ovnkube-trace.go#L540
~~~
// Returns nbAddress, sbAddress, protocol == "ssl", nil
func getDatabaseURIs(coreclient *corev1client.CoreV1Client, restconfig *rest.Config, ovnNamespace string) (string, string, bool, error) {
containerName := "ovnkube-master"
var err error

found := false
var podName string

listOptions := metav1.ListOptions{}
pods, err := coreclient.Pods(ovnNamespace).List(context.TODO(), listOptions)
if err != nil

{ return "", "", false, err }

for _, pod := range pods.Items {
for _, container := range pod.Spec.Containers {
if container.Name == containerName

{ found = true podName = pod.Name break }

}
}
if !found

{ klog.V(5).Infof("Cannot find ovnkube pods with container %s", containerName) return "", "", false, fmt.Errorf("cannot find ovnkube pods with container: %s", containerName) }

~~~

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1.
2.
3.

Actual results:

Expected results:

Additional info:

This is a clone of issue OCPBUGS-2083. The following is the description of the original issue:

Description of problem:
Currently we are running VMWare CSI Operator in OpenShift 4.10.33. After running vulnerability scans, the operator was discovered to be running a known weak cipher 3DES. We are attempting to upgrade or modify the operator to customize the ciphers available. We were looking at performing a manual upgrade via Quay.io but can't seem to pull the image and was trying to steer away from performing a custom install from scratch. Looking for any suggestions into mitigated the weak cipher in the kube-rbac-proxy under VMware CSI Operator.

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

There is capacity limit on egressIP for different cloud provider, for example, GCP, the limit is 10.

If the number of egressIP added to hostsubnet exceeds the capability limit, it is expected some logging message is emitted to event log, that can be seen through "oc get event"

 

On a GCP with SDN plugin, configure egressCIDRs on one worker node, configured 12 netnamespaces, each has 1 egressIP configured, the total number of egressIP for the hostsubnet has exceeded its capacity limit of 10.   No event log was seen to indicate that the number of egressIP for the hostsubnet has exceeded the limit.

$ oc get clusterversion
NAME      VERSION                              AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.0-0.nightly-2022-08-02-014045   True        False         160m    Cluster version is 4.11.0-0.nightly-2022-08-02-014045

 

See attachment for more details.

 

Description of problem:

Have 6 runs of techpreview jobs where the jobs fails due to the MCO:

 

 

{Operator degraded (RequiredPoolsFailed): Unable to apply 4.12.0-0.ci.test-2022-09-21-183414-ci-op-qd6plyhc-latest: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool master is not ready, retrying. Status: (pool degraded: true total: 3, ready 0, updated: 0, unavailable: 3)] Operator degraded (RequiredPoolsFailed): Unable to apply 4.12.0-0.ci.test-2022-09-21-183414-ci-op-qd6plyhc-latest: error during syncRequiredMachineConfigPools: [timed out waiting for the condition, error pool master is not ready, retrying. Status: (pool degraded: true total: 3, ready 0, updated: 0, unavailable: 3)]}
 

 

looking at the MCD logs the master seems to go degraded in bootstrap due to the rendered config not being found?

 
I0921 18:49:47.091804 8171 daemon.go:444] Node ci-op-qd6plyhc-6dd9a-bfmjd-master-1 is part of the control plane I0921 18:49:49.213556 8171 node.go:24] No machineconfiguration.openshift.io/currentConfig annotation on node ci-op-qd6plyhc-6dd9a-bfmjd-master-1: map[csi.volume.kubernetes.io/nodeid:
{"pd.csi.storage.gke.io":"projects/openshift-gce-devel-ci-2/zones/us-central1-b/instances/ci-op-qd6plyhc-6dd9a-bfmjd-master-1"}
volumes.kubernetes.io/controller-managed-attach-detach:true], in cluster bootstrap, loading initial node annotation from /etc/machine-config-daemon/node-annotations.json I0921 18:49:49.215186 8171 node.go:45] Setting initial node config: rendered-master-2dde32327e4e5d15092fccbac1dcec49 I0921 18:49:49.253706 8171 daemon.go:1184] In bootstrap mode E0921 18:49:49.254046 8171 writer.go:200] Marking Degraded due to: machineconfig.machineconfiguration.openshift.io "rendered-master-2dde32327e4e5d15092fccbac1dcec49" not found I0921 18:49:51.232610 8171 daemon.go:499] Transitioned from state: Done -> Degraded I0921 18:49:51.249618 8171 daemon.go:1184] In bootstrap mode E0921 18:49:51.249906 8171 writer.go:200] Marking Degraded due to: machineconfig.machineconfiguration.openshift.io "rendered-master-2dde32327e4e5d15092fccbac1dcec49" not found

However looking at controller a rendered-config was generated correctly but it's not the missing config from above:

I0921 18:54:06.736984 1 render_controller.go:506] Generated machineconfig rendered-master-acc8491aafab8ef511a40b76372325ee from 6 configs: [{MachineConfig 00-master machineconfiguration.openshift.io/v1 } {MachineConfig 01-master-container-runtime machineconfiguration.openshift.io/v1 } {MachineConfig 01-master-kubelet machineconfiguration.openshift.io/v1 } {MachineConfig 98-master-generated-kubelet machineconfiguration.openshift.io/v1 } {MachineConfig 99-master-generated-registries machineconfiguration.openshift.io/v1 } {MachineConfig 99-master-ssh machineconfiguration.openshift.io/v1 }] I0921 18:54:06.737226 1 event.go:285] Event(v1.ObjectReference{Kind:"MachineConfigPool", Namespace:"", Name:"master", UID:"b2084ca6-4b33-46bf-b83b-9e98010ff085", APIVersion:"machineconfiguration.openshift.io/v1", ResourceVersion:"5648", FieldPath:""}): type: 'Normal' reason: 'RenderedConfigGenerated' rendered-master-acc8491aafab8ef511a40b76372325ee successfully generated (release version: 4.12.0-0.ci.test-2022-09-21-183220-ci-op-9ksj7d7g-latest, controller version: a627415c240b4c7dd2f9e90f659690d9c0f623f3) I0921 18:54:06.742053 1 render_controller.go:532] Pool master: now targeting: rendered-master-acc8491aafab8ef511a40b76372325ee

 

So far I see this in the following techpreview jobs:
GCP techpreview
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-gcp-sdn-techpreview/1572638837954318336
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-gcp-sdn-techpreview-serial/1572638838793179136

Vsphere techpreview
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-nightly-4.12-e2e-vsphere-ovn-techpreview/1572638854794448896
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-nightly-4.12-e2e-vsphere-ovn-techpreview-serial/1572638855574589440

AWS Techpreview:
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-aws-sdn-techpreview/1572638828672323584
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-ci-4.12-e2e-aws-sdn-techpreview-serial/1572638829217583104

 

The above jobs affect the k8s 1.25 bump and are blocking the job.

There are also other occurances not in our PR:
https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/openshift_release/31965/rehearse-31965-pull-ci-openshift-openshift-controller-manager-master-openshift-e2e-aws-builds-techpreview/1572581504297472000

https://prow.ci.openshift.org/view/gs/origin-ci-test/pr-logs/pull/openshift_builder/307/pull-ci-openshift-builder-master-e2e-aws-builds-techpreview/1572599746021822464

 

Also see a quick search:
https://search.ci.openshift.org/?search=timed+out+waiting+for+the+condition%2C+error+pool+master+is+not+ready&maxAge=48h&context=1&type=bug%2Bissue%2Bjunit&name=&excludeName=&maxMatches=5&maxBytes=20971520&groupBy=job

Did something change that would affect tech preview jobs?

Also note, this seems like a new failure. I have some of these jobs passing in the last ~ 8 days.

This is a clone of issue OCPBUGS-2479. The following is the description of the original issue:

Description of problem:

Right border radius is 0 for the pipeline visualization wrapper in dark mode but looks fine in light mode

Version-Release number of selected component (if applicable):

4.12

How reproducible:

 

Steps to Reproduce:

1. Switch the theme to dark mode
2. Create a pipeline and navigate to the Pipeline details page

Actual results:

Right border radius is 0, see the screenshots

Expected results:

Right border radius should be same as left border radius.

Additional info:

 

Description of problem:

In a 4.11 cluster with only openshift-samples enabled, the 4.12 introduced optional COs console and insights are installed. While upgrading to 4.12, CVO considers them to be disabled explicitly and skips reconciling them. So these COs are not upgraded to 4.12.

Installed COs cannot be disabled, so CVO is supposed to implicitly enable them.


$ oc get clusterversion -oyaml
{
  "apiVersion": "config.openshift.io/v1",
     "kind": "ClusterVersion",
     "metadata": {
         "creationTimestamp": "2022-09-30T05:02:31Z",
         "generation": 3,
         "name": "version",
         "resourceVersion": "134808",
         "uid": "bd95473f-ffda-402d-8fe3-74f852a9d6eb"
     },
     "spec": {
         "capabilities": {
             "additionalEnabledCapabilities": [
                 "openshift-samples"
             ],
             "baselineCapabilitySet": "None"
         },
         "channel": "stable-4.11",
         "clusterID": "8eda5167-a730-4b39-be1d-214a80506d34",
         "desiredUpdate": {
             "force": true,
             "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
             "version": ""
         }
     },
     "status": {
         "availableUpdates": null,
         "capabilities": {
             "enabledCapabilities": [
                 "openshift-samples"
             ],
             "knownCapabilities": [
                 "Console",
                 "Insights",
                 "Storage",
                 "baremetal",
                 "marketplace",
                 "openshift-samples"
             ]
         },
         "conditions": [
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Unable to retrieve available updates: currently reconciling cluster version 4.12.0-0.nightly-2022-09-28-204419 not found in the \"stable-4.11\" channel",
                 "reason": "VersionNotFound",
                 "status": "False",
                 "type": "RetrievedUpdates"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Capabilities match configured spec",
                 "reason": "AsExpected",
                 "status": "False",
                 "type": "ImplicitlyEnabledCapabilities"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:02:33Z",
                 "message": "Payload loaded version=\"4.12.0-0.nightly-2022-09-28-204419\" image=\"registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc\" architecture=\"amd64\"",
                 "reason": "PayloadLoaded",
                 "status": "True",
                 "type": "ReleaseAccepted"
             },
             {
                 "lastTransitionTime": "2022-09-30T05:23:18Z",
                 "message": "Done applying 4.12.0-0.nightly-2022-09-28-204419",
                 "status": "True",
                 "type": "Available"
             },
             {
                 "lastTransitionTime": "2022-09-30T07:05:42Z",
                 "status": "False",
                 "type": "Failing"
             },
             {
                 "lastTransitionTime": "2022-09-30T07:41:53Z",
                 "message": "Cluster version is 4.12.0-0.nightly-2022-09-28-204419",
                 "status": "False",
                 "type": "Progressing"
             }
         ],
         "desired": {
             "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
             "version": "4.12.0-0.nightly-2022-09-28-204419"
         },
         "history": [
             {
                 "completionTime": "2022-09-30T07:41:53Z",
                 "image": "registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc",
                 "startedTime": "2022-09-30T06:42:01Z",
                 "state": "Completed",
                 "verified": false,
                 "version": "4.12.0-0.nightly-2022-09-28-204419"
             },
             {
                 "completionTime": "2022-09-30T05:23:18Z",
                 "image": "registry.ci.openshift.org/ocp/release@sha256:5a6f6d1bf5c752c75d7554aa927c06b5ea0880b51909e83387ee4d3bca424631",
                 "startedTime": "2022-09-30T05:02:33Z",
                 "state": "Completed",
                 "verified": false,
                 "version": "4.11.0-0.nightly-2022-09-29-191451"
             }
         ],
         "observedGeneration": 3,
         "versionHash": "CSCJ2fxM_2o="
     }
 }

$ oc get co
 NAME                                       VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      93m     
cloud-controller-manager                   4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h56m   
cloud-credential                           4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h59m   
cluster-autoscaler                         4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h53m   
config-operator                            4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
console                                    4.11.0-0.nightly-2022-09-29-191451   True        False         False      3h45m   
control-plane-machine-set                  4.12.0-0.nightly-2022-09-28-204419   True        False         False      117m    
csi-snapshot-controller                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
dns                                        4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h53m   
etcd                                       4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h52m   
image-registry                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h46m   
ingress                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      151m    
insights                                   4.11.0-0.nightly-2022-09-29-191451   True        False         False      3h48m   
kube-apiserver                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h50m   
kube-controller-manager                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h51m   
kube-scheduler                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h51m   
kube-storage-version-migrator              4.12.0-0.nightly-2022-09-28-204419   True        False         False      91m     
machine-api                                4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h50m   
machine-approver                           4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
machine-config                             4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h52m   
monitoring                                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h44m   
network                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h55m   
node-tuning                                4.12.0-0.nightly-2022-09-28-204419   True        False         False      113m    
openshift-apiserver                        4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h48m   
openshift-controller-manager               4.12.0-0.nightly-2022-09-28-204419   True        False         False      113m    
openshift-samples                          4.12.0-0.nightly-2022-09-28-204419   True        False         False      116m    
operator-lifecycle-manager                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
operator-lifecycle-manager-catalog         4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
operator-lifecycle-manager-packageserver   4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h48m   
service-ca                                 4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m   
storage                                    4.12.0-0.nightly-2022-09-28-204419   True        False         False      3h54m 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-28-204419

How reproducible:

Always

Steps to Reproduce:

1. Install a 4.11 cluster with only openshift-samples enabled
2. Upgrade to 4.12
3.

Actual results:

The 4.12 introduced optional CO console and insights are not upgraded to 4.12

Expected results:

All the installed COs get upgraded

Additional info:

 

This is a clone of issue OCPBUGS-6651. The following is the description of the original issue:

Description of problem:

When running a hypershift HostedCluster with a publicAndPrivate / private setup behind a proxy, Nodes never go ready.

ovn-kubernetes pods fail to run because the init container fails.

[root@ip-10-0-129-223 core]# crictl logs cf142bb9f427d
+ [[ -f /env/ ]]
++ date -Iseconds
2023-01-25T12:18:46+00:00 - checking sbdb
+ echo '2023-01-25T12:18:46+00:00 - checking sbdb'
+ echo 'hosts: dns files'
+ proxypid=15343
+ ovndb_ctl_ssl_opts='-p /ovn-cert/tls.key -c /ovn-cert/tls.crt -C /ovn-ca/ca-bundle.crt'
+ sbdb_ip=ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645
+ retries=0
+ ovn-sbctl --no-leader-only --timeout=5 --db=ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645 -p /ovn-cert/tls.key -c /ovn-cert/tls.crt -C /ovn-ca/ca-bundle.crt get-connection
+ exec socat TCP-LISTEN:9645,reuseaddr,fork PROXY:10.0.140.167:ovnkube-sbdb.apps.agl-proxy.hypershift.local:443,proxyport=3128
ovn-sbctl: ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645: database connection failed ()
+ ((  retries += 1  ))


Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always.

Steps to Reproduce:

1. Create a publicAndPrivate hypershift HostedCluster behind a proxy. E.g"
➜  hypershift git:(main) ✗ ./bin/hypershift create cluster \
aws --pull-secret ~/www/pull-secret-ci.txt \
--ssh-key ~/.ssh/id_ed25519.pub \
--name agl-proxy \
--aws-creds ~/www/config/aws-osd-hypershift-creds \
--node-pool-replicas=3 \
--region=us-east-1 \
--base-domain=agl.hypershift.devcluster.openshift.com \
--zones=us-east-1a \
--endpoint-access=PublicAndPrivate \
--external-dns-domain=agl-services.hypershift.devcluster.openshift.com --enable-proxy=true

2. Get the kubeconfig for the guest cluster. E.g
kubectl get secret -nclusters agl-proxy-admin-kubeconfig  -oyaml

3. Get pods in the guest cluster.
See ovnkube-node pods init container failing with
[root@ip-10-0-129-223 core]# crictl logs cf142bb9f427d
+ [[ -f /env/ ]]
++ date -Iseconds
2023-01-25T12:18:46+00:00 - checking sbdb
+ echo '2023-01-25T12:18:46+00:00 - checking sbdb'
+ echo 'hosts: dns files'
+ proxypid=15343
+ ovndb_ctl_ssl_opts='-p /ovn-cert/tls.key -c /ovn-cert/tls.crt -C /ovn-ca/ca-bundle.crt'
+ sbdb_ip=ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645
+ retries=0
+ ovn-sbctl --no-leader-only --timeout=5 --db=ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645 -p /ovn-cert/tls.key -c /ovn-cert/tls.crt -C /ovn-ca/ca-bundle.crt get-connection
+ exec socat TCP-LISTEN:9645,reuseaddr,fork PROXY:10.0.140.167:ovnkube-sbdb.apps.agl-proxy.hypershift.local:443,proxyport=3128
ovn-sbctl: ssl:ovnkube-sbdb.apps.agl-proxy.hypershift.local:9645: database connection failed ()
+ ((  retries += 1  ))

To create a bastion an ssh into the Nodes See https://hypershift-docs.netlify.app/how-to/debug-nodes/

Actual results:

Nodes unready

Expected results:

Nodes go ready

Additional info:

 

This is a clone of issue OCPBUGS-3277. The following is the description of the original issue:

I saw this occur one time when running installs in a continuous loop. This was with COMPaCT_IPV4 in a non-disconnected setup.

WaitForBootrapComplete shows it can't access the API

level=info msg=Unable to retrieve cluster metadata from Agent Rest API: no clusterID known for the cluster
level=debug msg=cluster is not registered in rest API
level=debug msg=infraenv is not registered in rest API

This is because create-cluster-and-infraenv.service failed

Failed Units: 2
  create-cluster-and-infraenv.service
  NetworkManager-wait-online.service

The agentbasedinstaller register command wasn't able to retrieve the image to get the version

Nov 03 23:03:24 master-0 create-cluster-and-infraenv[2702]: time="2022-11-03T23:03:24Z" level=error msg="command 'oc adm release info -o template --template '\{{.metadata.version}}' --insecure=false registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451 --registry-config=/tmp/registry-config3852044519' exited with non-zero exit code 1: \nerror: unable to read image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451: Get \"https://registry.ci.openshift.org/v2/\": dial tcp: lookup registry.ci.openshift.org on 192.168.111.1:53: read udp 192.168.111.80:51315->192.168.111.1:53: i/o timeout\n"
Nov 03 23:03:24 master-0 create-cluster-and-infraenv[2702]: time="2022-11-03T23:03:24Z" level=error msg="failed to get image openshift version from release image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451" error="command 'oc adm release info -o template --template '\{{.metadata.version}}' --insecure=false registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451 --registry-config=/tmp/registry-config3852044519' exited with non-zero exit code 1: \nerror: unable to read image registry.ci.openshift.org/ocp/release:4.12.0-0.nightly-2022-10-25-210451: Get \"https://registry.ci.openshift.org/v2/\": dial tcp: lookup registry.ci.openshift.org on 192.168.111.1:53: read udp 192.168.111.80:51315->192.168.111.1:53: i/o timeout\n"

This occurs when attempting to get the release here:
https://github.com/openshift/assisted-service/blob/master/cmd/agentbasedinstaller/register.go#L58

 

We should add a retry mechanism or restart the service to handle spurious network failures like this.

 

 

Description of problem:

The default catalogSources are not being ran in restricted mode.

Version-Release number of selected component (if applicable):

4.12.0

How reproducible:

Always

Steps to Reproduce:

1. Create an 4.12 openshift cluster
2. Check the securityContextConfig for the default catalogSources

Actual results:

$ k get catsrc  -n openshift-marketplace -o yaml | grep securityContextConfig
    securityContextConfig: legacy
    securityContextConfig: legacy
    securityContextConfig: legacy
    securityContextConfig: legacy

Expected results:

$ k get catsrc  -n openshift-marketplace -o yaml | grep securityContextConfig
      securityContextConfig: restricted
      securityContextConfig: restricted
      securityContextConfig: restricted
      securityContextConfig: restricted

Additional info:

 

 

 

 

Description of problem:

Container networking pods cannot access the host network pods on another node which caused some operators DEGRADED

$ oc get co
NAME                                       VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.12.0-0.nightly-2022-10-23-204408   False       True          True       63m     OAuthServerRouteEndpointAccessibleControllerAvailable: Get "https://oauth-openshift.apps.jhou.arm.eng.rdu2.redhat.com/healthz": context deadline exceeded (Client.Timeout exceeded while awaiting headers)...
baremetal                                  4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
cloud-controller-manager                   4.12.0-0.nightly-2022-10-23-204408   True        False         False      68m     
cloud-credential                           4.12.0-0.nightly-2022-10-23-204408   True        False         False      78m     
cluster-autoscaler                         4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
config-operator                            4.12.0-0.nightly-2022-10-23-204408   True        False         False      63m     
console                                    4.12.0-0.nightly-2022-10-23-204408   False       False         False      30m     RouteHealthAvailable: failed to GET route (https://console-openshift-console.apps.jhou.arm.eng.rdu2.redhat.com): Get "https://console-openshift-console.apps.jhou.arm.eng.rdu2.redhat.com": context deadline exceeded (Client.Timeout exceeded while awaiting headers)
control-plane-machine-set                  4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
csi-snapshot-controller                    4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
dns                                        4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
etcd                                       4.12.0-0.nightly-2022-10-23-204408   False       True          True       13m     EtcdMembersAvailable: 1 of 2 members are available, openshift-qe-048.arm.eng.rdu2.redhat.com is unhealthy
image-registry                             4.12.0-0.nightly-2022-10-23-204408   True        False         False      39m     
ingress                                    4.12.0-0.nightly-2022-10-23-204408   True        False         True       47m     The "default" ingress controller reports Degraded=True: DegradedConditions: One or more other status conditions indicate a degraded state: CanaryChecksSucceeding=False (CanaryChecksRepetitiveFailures: Canary route checks for the default ingress controller are failing)
insights                                   4.12.0-0.nightly-2022-10-23-204408   True        False         False      56m     
kube-apiserver                             4.12.0-0.nightly-2022-10-23-204408   True        False         False      50m     
kube-controller-manager                    4.12.0-0.nightly-2022-10-23-204408   True        False         True       60m     GarbageCollectorDegraded: error querying alerts: client_error: client error: 403
kube-scheduler                             4.12.0-0.nightly-2022-10-23-204408   True        False         False      54m     
kube-storage-version-migrator              4.12.0-0.nightly-2022-10-23-204408   True        False         False      63m     
machine-api                                4.12.0-0.nightly-2022-10-23-204408   True        False         False      51m     
machine-approver                           4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
machine-config                             4.12.0-0.nightly-2022-10-23-204408   True        False         False      29m     
marketplace                                4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
monitoring                                 4.12.0-0.nightly-2022-10-23-204408   True        False         False      38m     
network                                    4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
node-tuning                                4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
openshift-apiserver                        4.12.0-0.nightly-2022-10-23-204408   True        False         False      30m     
openshift-controller-manager               4.12.0-0.nightly-2022-10-23-204408   True        False         False      56m     
openshift-samples                          4.12.0-0.nightly-2022-10-23-204408   True        False         False      43m     
operator-lifecycle-manager                 4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
operator-lifecycle-manager-catalog         4.12.0-0.nightly-2022-10-23-204408   True        False         False      62m     
operator-lifecycle-manager-packageserver   4.12.0-0.nightly-2022-10-23-204408   True        False         False      43m     
service-ca                                 4.12.0-0.nightly-2022-10-23-204408   True        False         False      63m     
storage                                    4.12.0-0.nightly-2022-10-23-204408   True        False         False      63m


$ oc get pod -n openshift-ingress -o wide
NAME                              READY   STATUS    RESTARTS      AGE   IP                                  NODE                                       NOMINATED NODE   READINESS GATES
router-default-58f6498646-gf6ns   1/1     Running   1 (79m ago)   93m   2620:52:0:1eb:3673:5aff:fe9e:5abc   openshift-qe-049.arm.eng.rdu2.redhat.com   <none>           <none>
router-default-58f6498646-qjtbk   1/1     Running   1 (79m ago)   93m   2620:52:0:1eb:3673:5aff:fe9e:593c   openshift-qe-052.arm.eng.rdu2.redhat.com   <none>           <none>


$ oc get pod -n openshift-network-diagnostics -o wide
NAME                                    READY   STATUS    RESTARTS   AGE    IP              NODE                                       NOMINATED NODE   READINESS GATES
network-check-source-5f967d78bc-cfwz4   1/1     Running   0          103m   fd01:0:0:3::9   openshift-qe-052.arm.eng.rdu2.redhat.com   <none>           <none>
network-check-target-52krv              1/1     Running   0          91m    fd01:0:0:4::3   openshift-qe-049.arm.eng.rdu2.redhat.com   <none>           <none>
network-check-target-56q9q              1/1     Running   0          91m    fd01:0:0:3::5   openshift-qe-052.arm.eng.rdu2.redhat.com   <none>           <none>
network-check-target-ggqsf              1/1     Running   0          103m   fd01:0:0:2::4   openshift-qe-048.arm.eng.rdu2.redhat.com   <none>           <none>
network-check-target-xfrq4              1/1     Running   0          103m   fd01:0:0:1::3   openshift-qe-047.arm.eng.rdu2.redhat.com   <none>           <none>
network-check-target-zrglr              1/1     Running   0          73m    fd01:0:0:6::4   openshift-qe-051.arm.eng.rdu2.redhat.com   <none>           <none>
network-check-target-zwb4t              1/1     Running   0          91m    fd01:0:0:5::5   openshift-qe-053.arm.eng.rdu2.redhat.com   <none>           <none>

####Failed from containers pod on openshift-qe-053.arm.eng.rdu2.redhat.com to access ingress pods

$ oc rsh -n openshift-network-diagnostics netw