Back to index

4.12.0-rc.2

Jump to: Complete Features | Incomplete Features | Complete Epics | Incomplete Epics | Other Complete | Other Incomplete |

Changes from 4.11.59

Note: this page shows the Feature-Based Change Log for a release

Complete Features

These features were completed when this image was assembled

1. Proposed title of this feature request
Add runbook_url to alerts in the OCP UI

2. What is the nature and description of the request?
If an alert includes a runbook_url label, then it should appear in the UI for the alert as a link.

3. Why does the customer need this? (List the business requirements here)
Customer can easily reach the alert runbook and be able to address their issues.

4. List any affected packages or components.

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Rebase OpenShift components to k8s v1.24

Why is this important?

  • Rebasing ensures components work with the upcoming release of Kubernetes
  • Address tech debt related to upstream deprecations and removals.

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. k8s 1.24 release

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Incomplete Features

When this image was assembled, these features were not yet completed. Therefore, only the Jira Cards included here are part of this release

OLM would have to support a mechanism like podAffinity which allows multiple architecture values to be specified which enables it to pin operators to the matching architecture worker nodes

Ref: https://github.com/openshift/enhancements/pull/1014

 

Cut a new release of the OLM API and update OLM API dependency version (go.mod) in OLM package; then
Bring the upstream changes from OLM-2674 to the downstream olm repo.

A/C:

 - New OLM API version release
 - OLM API dependency updated in OLM Project
 - OLM Subscription API changes  downstreamed
 - OLM Controller changes  downstreamed
 - Changes manually tested on Cluster Bot

Epic Goal

  • Enabling integration of single hub cluster to install both ARM and x86 spoke clusters
  • Enabling support for heterogeneous OCP clusters
  • document requirements deployment flows
  • support in disconnected environment

Why is this important?

  • clients request

Scenarios

  1. Users manage both ARM and x86 machines, we should not require to have two different hub clusters
  2. Users manage a mixed architecture clusters without requirement of all the nodes to be of the same architecture

Acceptance Criteria

  • Process is well documented
  • we are able to install in a disconnected environment

We have a set of images

  • quay.io/edge-infrastructure/assisted-installer-agent:latest
  • quay.io/edge-infrastructure/assisted-installer-controller:latest
  • quay.io/edge-infrastructure/assisted-installer:latest

that should become multiarch images. This should be done both in upstream and downstream.

As a reference, we have built internally those images as multiarch and made them available as

  • registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
  • registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

They can be consumed by the Assisted Serivce pod via the following env

    - name: AGENT_DOCKER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-agent-rhel8:latest
    - name: CONTROLLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-reporter-rhel8:latest
    - name: INSTALLER_IMAGE
      value: registry.redhat.io/rhai-tech-preview/assisted-installer-rhel8:latest

Feature Overview

We drive OpenShift cross-market customer success and new customer adoption with constant improvements and feature additions to the existing capabilities of our OpenShift Core Networking (SDN and Network Edge). This feature captures that natural progression of the product.

Goals

  • Feature enhancements (performance, scale, configuration, UX, ...)
  • Modernization (incorporation and productization of new technologies)

Requirements

  • Core Networking Stability
  • Core Networking Performance and Scale
  • Core Neworking Extensibility (Multus CNIs)
  • Core Networking UX (Observability)
  • Core Networking Security and Compliance

In Scope

  • Network Edge (ingress, DNS, LB)
  • SDN (CNI plugins, openshift-sdn, OVN, network policy, egressIP, egress Router, ...)
  • Networking Observability

Out of Scope

There are definitely grey areas, but in general:

  • CNV
  • Service Mesh
  • CNF

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

Goal: Provide queryable metrics and telemetry for cluster routes and sharding in an OpenShift cluster.

Problem: Today we test OpenShift performance and scale with best-guess or anecdotal evidence for the number of routes that our customers use. Best practices for a large number of routes in a cluster is to shard, however we have no visibility with regard to if and how customers are using sharding.

Why is this important? These metrics will inform our performance and scale testing, documented cluster limits, and how customers are using sharding for best practice deployments.

Dependencies (internal and external):

Prioritized epics + deliverables (in scope / not in scope):

Not in scope:

Estimate (XS, S, M, L, XL, XXL):

Previous Work:

Open questions:

Acceptance criteria:

Epic Done Checklist:

  • CI - CI Job & Automated tests: <link to CI Job & automated tests>
  • Release Enablement: <link to Feature Enablement Presentation> 
  • DEV - Upstream code and tests merged: <link to meaningful PR orf GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
  • Notes for Done Checklist
    • Adding links to the above checklist with multiple teams contributing; select a meaningful reference for this Epic.
    • Checklist added to each Epic in the description, to be filled out as phases are completed - tracking progress towards “Done” for the Epic.

Description:

As described in the Design Doc, the following information is needed to be exported from Cluster Ingress Operator:

  • Number of routes/shard

Design 2 will be implemented as part of this story.

 

Acceptance Criteria:

  • Support for exporting the above mentioned metrics by Cluster Ingress Operator

Description:

As described in the Metrics to be sent via telemetry section of the Design Doc, the following metrics is needed to be sent from OpenShift cluster to Red Hat premises:

  • Minimum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:min  : min(route_metrics_controller_routes_per_shard)
    • Gives the minimum value of Routes per Shard.
  • Maximum Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:max  : max(route_metrics_controller_routes_per_shard)
    • Gives the maximum value of Routes per Shard.
  • Average Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:avg  : avg(route_metrics_controller_routes_per_shard)
    • Gives the average value of Routes per Shard.
  • Median Routes per Shard
    • Recording Rule – cluster:route_metrics_controller_routes_per_shard:median  : quantile(0.5, route_metrics_controller_routes_per_shard)
    • Gives the median value of Routes per Shard.
  • Number of Routes summed by TLS Termination type
    • Recording Rule – cluster:openshift_route_info:tls_termination:sum : sum (openshift_route_info) by (tls_termination)
    • Gives the number of Routes for each tls_termination value. The possible values for tls_termination are edge, passthrough and reencrypt. 

The metrics should be allowlisted on the cluster side.

The steps described in Sending metrics via telemetry are needed to be followed. Specifically step 5.

Depends on CFE-478.

Acceptance Criteria:

  • Support for sending the above mentioned metrics from OpenShift clusters to the Red Hat premises by allowlisting metrics on the cluster side

Epic Goal

  • Make it possible to disable the console operator at install time, while still having a supported+upgradeable cluster.

Why is this important?

  • It's possible to disable console itself using spec.managementState in the console operator config. There is no way to remove the console operator, though. For clusters where an admin wants to completely remove console, we should give the option to disable the console operator as well.

Scenarios

  1. I'm an administrator who wants to minimize my OpenShift cluster footprint and who does not want the console installed on my cluster

Acceptance Criteria

  • It is possible at install time to opt-out of having the console operator installed. Once the cluster comes up, the console operator is not running.

Dependencies (internal and external)

  1. Composable cluster installation

Previous Work (Optional):

  1. https://docs.google.com/document/d/1srswUYYHIbKT5PAC5ZuVos9T2rBnf7k0F1WV2zKUTrA/edit#heading=h.mduog8qznwz
  2. https://docs.google.com/presentation/d/1U2zYAyrNGBooGBuyQME8Xn905RvOPbVv3XFw3stddZw/edit#slide=id.g10555cc0639_0_7

Open questions::

  1. The console operator manages the downloads deployment as well. Do we disable the downloads deployment? Long term we want to move to CLI manager: https://github.com/openshift/enhancements/blob/6ae78842d4a87593c63274e02ac7a33cc7f296c3/enhancements/oc/cli-manager.md

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

In the console-operator repo we need to add `capability.openshift.io/console` annotation to all the manifests that the operator either contains creates on the fly.

 

Manifests are currently present in /bindata and /manifest directories.

 

Here is example of the insights-operator change.

Here is the overall enhancement doc.

 

This is a epic bucket for all activities surrounding the creation of declarative approach to release and maintain OLM catalogs.

Epic Goal

  • Allow Operator Authors to easily change the layout of the update graph in a single location so they can version/maintain/release it via git and have more approachable controls about graph vertices than today's replaces, skips and/or skipRange taxonomy
  • Allow Operators authors to have control over channel and bundle channel membership

Why is this important?

  • The imperative catalog maintenance approach so far with opm is being moved to a declarative format (OLM-2127 and OLM-1780) moving away from bundle-level controls but the update graph properties are still attached to a bundle
  • We've received feedback from the RHT internal developer community that maintaining and reasoning about the graph in the context of a single channel is still too hard, even with visualization tools
  • making the update graph easily changeable is important to deliver on some of the promises of declarative index configuration
  • The current interface for declarative index configuration still relies on skips, skipRange and replaces to shape the graph on a per-bundle level - this is too complex at a certain point with a lot of bundles in channels, we need to something at the package level

Scenarios

  1. An Operator author wants to release a new version replacing the latest version published previously
  2. After additional post-GA testing an Operator author wants to establish a new update path to an existing released version from an older, released version
  3. After finding a bug post-GA an Operator author wants to temporarily remove a known to be problematic update path
  4. An automated system wants to push a bundle inbetween an existing update path as a result of an Operator (base) image rebuild (Freshmaker use case)
  5. A user wants to take a declarative graph definition and turn it into a graphical image for visually ensuring the graph looks like they want
  6. An Operator author wants to promote a certain bundle to an additional / different channel to indicate progress in maturity of the operator.

Acceptance Criteria

  • The declarative format has to be user readable and terse enough to make quick modifications
  • The declarative format should be machine writeable (Freshmaker)
  • The update graph is declared and modified in a text based format aligned with the declarative config
  • it has to be possible to add / removes edges at the leave of the graph (releasing/unpublishing a new version)
  • it has to be possible to add/remove new vertices between existing edges (releasing/retracting a new update path)
  • it has to be possible to add/remove new edges in between existing vertices (releasing/unpublishing a version inbetween, freshmaker user case)
  • it has to be possible to change the channel member ship of a bundle after it's published (channel promotion)
  • CI - MUST be running successfully with tests automated
  • it has to be possible to add additional metadata later to implement OLM-2087 and OLM-259 if required

Dependencies (internal and external)

  1. Declarative Index Config (OLM-2127)

Previous Work:

  1. Declarative Index Config (OLM-1780)

Related work

Open questions:

  1. What other manipulation scenarios are required?
    1. Answer: deprecation of content in the spirit of OLM-2087
    2. Answer: cross-channel update hints as described in OLM-2059 if that implementation requires it

 

When working on this Epic, it's important to keep in mind this other potentially related Epic: https://issues.redhat.com/browse/OLM-2276

 

Jira Description

As an OPM maintainer, I want to downstream the PR for (OCP 4.12 ) and backport it to OCP 4.11 so that IIB will NOT be impacted by the changes when it upgrades the OPM version to use the next/future opm upstream release (v1.25.0).

Summary / Background

IIB(the downstream service that manages the indexes) uses the upstream version and if they bump the OPM version to the next/future (v1.25.0) release with this change before having the downstream images updated then: the process to manage the indexes downstream will face issues and it will impact the distributions. 

Acceptance Criteria

  • The changes in the PR are available for the releases which uses FBC -> OCP 4.11, 4.12

Definition of Ready

  • PRs merged into downstream OCP repos branches 4.11/4.12

Definition of Done

  • We checked that the downstream images are with the changes applied (i.e.: we can try to verify in the same way that we checked if the changes were in the downstream for the fix OLM-2639 )

enhance the veneer rendering to be able to read the input veneer data from stdin, via a pipe, in a manner similar to https://dev.to/napicella/linux-pipes-in-golang-2e8j

then the command could be used in a manner similar to many k8s examples like

```shell
opm alpha render-veneer semver -o yaml < infile > outfile
```

Upstream issue link: https://github.com/operator-framework/operator-registry/issues/1011

Feature Overview
Provide CSI drivers to replace all the intree cloud provider drivers we currently have. These drivers will probably be released as tech preview versions first before being promoted to GA.

Goals

  • Framework for rapid creation of CSI drivers for our cloud providers
  • CSI driver for AWS EBS
  • CSI driver for AWS EFS
  • CSI driver for GCP
  • CSI driver for Azure
  • CSI driver for VMware vSphere
  • CSI Driver for Azure Stack
  • CSI Driver for Alicloud
  • CSI Driver for IBM Cloud

Requirements

Requirement Notes isMvp?
Framework for CSI driver  TBD Yes
Drivers should be available to install both in disconnected and connected mode   Yes
Drivers should upgrade from release to release without any impact   Yes
Drivers should be installable via CVO (when in-tree plugin exists)    

Out of Scope

This work will only cover the drivers themselves, it will not include

  • enhancements to the CSI API framework
  • the migration to said drivers from the the intree drivers
  • work for non-cloud provider storage drivers (FC-SAN, iSCSI) being converted to CSI drivers

Background, and strategic fit
In a future Kubernetes release (currently 1.21) intree cloud provider drivers will be deprecated and replaced with CSI equivalents, we need the drivers created so that we continue to support the ecosystems in an appropriate way.

Assumptions

  • Storage SIG won't move out the changeover to a later Kubernetes release

Customer Considerations
Customers will need to be able to use the storage they want.

Documentation Considerations

  • Target audience: cluster admins
  • Updated content: update storage docs to show how to use these drivers (also better expose the capabilities)

This Epic is to track the GA of this feature

Goal

  • Make available the Google Cloud File Service via a CSI driver, it is desirable that this implementation has dynamic provisioning
  • Without GCP filestore support, we are limited to block / RWO only (GCP PD 4.8 GA)
  • Align with what we support on other major public cloud providers.

Why is this important?

  • There is a know storage gap with google cloud where only block is supported
  • More customers deploying on GCE and asking for file / RWX storage.

Scenarios

  1. Install the CSI driver
  2. Remove the CSI Driver
  3. Dynamically provision a CSI Google File PV*
  4. Utilise a Google File PV
  5. Assess optional features such as resize & snapshot

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Customers::

  • Telefonica Spain
  • Deutsche Bank

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an OCP user, I want images for GCP Filestore CSI Driver and Operator, so that I can install them on my cluster and utilize GCP Filestore shares.

We need to continue to maintain specific areas within storage, this is to capture that effort and track it across releases.

Goals

  • To allow OCP users and cluster admins to detect problems early and with as little interaction with Red Hat as possible.
  • When Red Hat is involved, make sure we have all the information we need from the customer, i.e. in metrics / telemetry / must-gather.
  • Reduce storage test flakiness so we can spot real bugs in our CI.

Requirements

Requirement Notes isMvp?
Telemetry   No
Certification   No
API metrics   No
     

Out of Scope

n/a

Background, and strategic fit
With the expected scale of our customer base, we want to keep load of customer tickets / BZs low

Assumptions

Customer Considerations

Documentation Considerations

  • Target audience: internal
  • Updated content: none at this time.

Notes

In progress:

  • CI flakes:
    • Configurable timeouts for e2e tests
      • Azure is slow and times out often
      • Cinder times out formatting volumes
      • AWS resize test times out

 

High prio:

  • Env. check tool for VMware - users often mis-configure permissions there and blame OpenShift. If we had a tool they could run, it might report better errors.
    • Should it be part of the installer?
    • Spike exists
  • Add / use cloud API call metrics
    • Helps customers to understand why things are slow
    • Helps build cop to understand a flake
      • With a post-install step that filters data from Prometheus that’s still running in the CI job.
    • Ideas:
      • Cloud is throttling X% of API calls longer than Y seconds
      • Attach / detach / provisioning / deletion / mount / unmount / resize takes longer than X seconds?
    • Capture metrics of operations that are stuck and won’t finish.
      • Sweep operation map from executioner???
      • Report operation metric into the highest bucket after the bucket threshold (i.e. if 10minutes is the last bucket, report an operation into this bucket after 10 minutes and don’t wait for its completion)?
      • Ask the monitoring team?
    • Include in CSI drivers too.
      • With alerts too

Unsorted

  • As the number of storage operators grows, it would be grafana board for storage operators
    • CSI driver metrics (from CSI sidecars + the driver itself  + its operator?)
    • CSI migration?
  • Get aggregated logs in cluster
    • They're rotated too soon
    • No logs from dead / restarted pods
    • No tools to combine logs from multiple pods (e.g. 3 controller managers)
  • What storage issues customers have? it was 22% of all issues.
    • Insufficient docs?
    • Probably garbage
  • Document basic storage troubleshooting for our supports
    • What logs are useful when, what log level to use
    • This has been discussed during the GSS weekly team meeting; however, it would be beneficial to have this documented.
  • Common vSphere errors, their debugging and fixing. 
  • Document sig-storage flake handling - not all failed [sig-storage] tests are ours
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

The End of General support for vSphere 6.7 will be on October 15, 2022. So, vSphere 6.7 will be deprecated for 4.11.

We want to encourage vSphere customers to upgrade to vSphere 7 in OCP 4.11 since VMware is EOLing (general support) for vSphere 6.7 in Oct 2022.

We want the cluster Upgradeable=false + have a strong alert pointing to our docs / requirements.

related slack: https://coreos.slack.com/archives/CH06KMDRV/p1647541493096729

Epic Goal

  • Update all images that we ship with OpenShift to the latest upstream releases and libraries.
  • Exact content of what needs to be updated will be determined as new images are released upstream, which is not known at the beginning of OCP development work. We don't know what new features will be included and should be tested and documented. Especially new CSI drivers releases may bring new, currently unknown features. We expect that the amount of work will be roughly the same as in the previous releases. Of course, QE or docs can reject an update if it's too close to deadline and/or looks too big.

Traditionally we did these updates as bugfixes, because we did them after the feature freeze (FF). Trying no-feature-freeze in 4.12. We will try to do as much as we can before FF, but we're quite sure something will slip past FF as usual.

Why is this important?

  • We want to ship the latest software that contains new features and bugfixes.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

This includes ibm-vpc-node-label-updater!

(Using separate cards for each driver because these updates can be more complicated)

Update all OCP and kubernetes libraries in storage operators to the appropriate version for OCP release.

This includes (but is not limited to):

  • Kubernetes:
    • client-go
    • controller-runtime
  • OCP:
    • library-go
    • openshift/api
    • openshift/client-go
    • operator-sdk

Operators:

  • aws-ebs-csi-driver-operator 
  • aws-efs-csi-driver-operator
  • azure-disk-csi-driver-operator
  • azure-file-csi-driver-operator
  • openstack-cinder-csi-driver-operator
  • gcp-pd-csi-driver-operator
  • gcp-filestore-csi-driver-operator
  • manila-csi-driver-operator
  • ovirt-csi-driver-operator
  • vmware-vsphere-csi-driver-operator
  • alibaba-disk-csi-driver-operator
  • ibm-vpc-block-csi-driver-operator
  • csi-driver-shared-resource-operator

 

  • cluster-storage-operator
  • csi-snapshot-controller-operator
  • local-storage-operator
  • vsphere-problem-detector

There is a new driver release 5.0.0 since the last rebase that includes snapshot support:

https://github.com/kubernetes-sigs/ibm-vpc-block-csi-driver/releases/tag/v5.0.0

Rebase the driver on v5.0.0 and update the deployments in ibm-vpc-block-csi-driver-operator.
There are no corresponding changes in ibm-vpc-node-label-updater since the last rebase.

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Update the driver to the latest upstream release. Notify QE and docs with any new features and important bugfixes that need testing or documentation.

(Using separate cards for each driver because these updates can be more complicated)

Epic Goal

  • Enable the migration from a storage intree driver to a CSI based driver with minimal impact to the end user, applications and cluster
  • These migrations would include, but are not limited to:
    • CSI driver for AWS EBS
    • CSI driver for GCP
    • CSI driver for Azure (file and disk)
    • CSI driver for VMware vSphere

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

This Epic tracks the GA of this feature

Epic Goal

Why is this important?

  • OpenShift needs to maintain it's ability to enable PVCs and PVs of the main storage types
  • CSI Migration is getting close to GA, we need to have the feature fully tested and enabled in OpenShift
  • Upstream intree drivers are being deprecated to make way for the CSI drivers prior to intree driver removal

Scenarios

  1. User initiated move to from intree to CSI driver
  2. Upgrade initiated move from intree to CSI driver
  3. Upgrade from EUS to EUS

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

On new installations, we should make the StorageClass created by the CSI operator the default one. 

However, we shouldn't do that on an upgrade scenario. The main reason is that users might have set  a different quota on the CSI driver Storage Class.

Exit criteria:

  • New clusters get the CSI Storage Class as the default one.
  • Existing clusters don't get their default Storage Classes changed.

tldr: three basic claims, the rest is explanation and one example

  1. We cannot improve long term maintainability solely by fixing bugs.
  2. Teams should be asked to produce designs for improving maintainability/debugability.
  3. Specific maintenance items (or investigation of maintenance items), should be placed into planning as peer to PM requests and explicitly prioritized against them.

While bugs are an important metric, fixing bugs is different than investing in maintainability and debugability. Investing in fixing bugs will help alleviate immediate problems, but doesn't improve the ability to address future problems. You (may) get a code base with fewer bugs, but when you add a new feature, it will still be hard to debug problems and interactions. This pushes a code base towards stagnation where it gets harder and harder to add features.

One alternative is to ask teams to produce ideas for how they would improve future maintainability and debugability instead of focusing on immediate bugs. This would produce designs that make problem determination, bug resolution, and future feature additions faster over time.

I have a concrete example of one such outcome of focusing on bugs vs quality. We have resolved many bugs about communication failures with ingress by finding problems with point-to-point network communication. We have fixed the individual bugs, but have not improved the code for future debugging. In so doing, we chase many hard to diagnose problem across the stack. The alternative is to create a point-to-point network connectivity capability. this would immediately improve bug resolution and stability (detection) for kuryr, ovs, legacy sdn, network-edge, kube-apiserver, openshift-apiserver, authentication, and console. Bug fixing does not produce the same impact.

We need more investment in our future selves. Saying, "teams should reserve this" doesn't seem to be universally effective. Perhaps an approach that directly asks for designs and impacts and then follows up by placing the items directly in planning and prioritizing against PM feature requests would give teams the confidence to invest in these areas and give broad exposure to systemic problems.


Relevant links:

OCP/Telco Definition of Done

Epic Template descriptions and documentation.

Epic Goal

Why is this important?

  • This regression is a major performance and stability issue and it has happened once before.

Drawbacks

  • The E2E test may be complex due to trying to determine what DNS pods are responding to DNS requests. This is straightforward using the chaos plugin.

Scenarios

  • CI Testing

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. SDN Team

Previous Work (Optional):

  1. N/A

Open questions::

  1. Where do these E2E test go? SDN Repo? DNS Repo?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub
    Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Enable the chaos plugin https://coredns.io/plugins/chaos/ in our CoreDNS configuration so that we can use a DNS query to easily identify what DNS pods are responding to our requests.

Epic Goal

  • Change the default value for the spec.tuningOptions.maxConnections field in the IngressController API, which configures the HAProxy maxconn setting, to 50000 (fifty thousand).

Why is this important?

  • The maxconn setting constrains the number of simultaneous connections that HAProxy accepts. Beyond this limit, the kernel queues incoming connections. 
  • Increasing maxconn enables HAProxy to queue incoming connections intelligently.  In particular, this enables HAProxy to respond to health probes promptly while queueing other connections as needed.
  • The default setting of 20000 has been in place since OpenShift 3.5 was released in April 2017 (see BZ#1405440, commit, RHBA-2017:0884). 
  • Hardware capabilities have increased over time, and the current default is too low for typical modern machine sizes. 
  • Increasing the default setting improves HAProxy's performance at an acceptable cost in the common case. 

Scenarios

  1. As a cluster administrator who is installing OpenShift on typical hardware, I want OpenShift router to be tuned appropriately to take advantage of my hardware's capabilities.

Acceptance Criteria

  • CI is passing. 
  • The new default setting is clearly documented. 
  • A release note informs cluster administrators of the change to the default setting. 

Dependencies (internal and external)

  1. None.

Previous Work (Optional):

  1. The  haproxy-max-connections-tuning enhancement made maxconn configurable without changing the default.  The enhancement document details the tradeoffs in terms of memory for various settings of nbthreads and maxconn with various numbers of routes. 

Open questions::

  1. ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

 

Feature Overview

  • This Section:* High-Level description of the feature ie: Executive Summary
  • Note: A Feature is a capability or a well defined set of functionality that delivers business value. Features can include additions or changes to existing functionality. Features can easily span multiple teams, and multiple releases.

 

Goals

  • This Section:* Provide high-level goal statement, providing user context and expected user outcome(s) for this feature

 

Requirements

  • This Section:* A list of specific needs or objectives that a Feature must deliver to satisfy the Feature.. Some requirements will be flagged as MVP. If an MVP gets shifted, the feature shifts. If a non MVP requirement slips, it does not shift the feature.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

 

(Optional) Use Cases

This Section: 

  • Main success scenarios - high-level user stories
  • Alternate flow/scenarios - high-level user stories
  • ...

 

Questions to answer…

  • ...

 

Out of Scope

 

Background, and strategic fit

This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

 

Assumptions

  • ...

 

Customer Considerations

  • ...

 

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?  
  • New Content, Updates to existing content,  Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

As a developer, I want to make status.HostIP for Pods visible in the Pod details page of the OCP Web Console. Currently there is no way to view the node IP for a Pod in the OpenShift Web Console.  When viewing a Pod in the console, the field status.HostIP is not visible.

 

Acceptance criteria:

  • Make pod's HostIP field visible in the pod details page, similarly to PodIP field

As a console user I want to have option to:

  • Restart Deployment
  • Retry latest DeploymentConfig if it failed

 

For Deployments we will add the 'Restart rollout' action button. This action will PATCH the Deployment object's 'spec.template.metadata.annotations' block, by adding 'openshift.io/restartedAt: <actual-timestamp>' annotation. This will restart the deployment, by creating a new ReplicaSet.

  • action is disabled if:
    • Deployment is paused

 

For DeploymentConfig we will add 'Retry rollout' action button.  This action will PATCH the latest revision of ReplicationController object's 'metadata.annotations' block by setting 'openshift.io/deployment/phase: "New"' and removing openshift.io/deployment.cancelled and openshift.io/deployment.status-reason.

  • action is enabled if:
    • latest revision of the ReplicationController resource is in Failed phase
  • action is disabled if:
    • latest revision of the ReplicationController resource is in Complete phase
    • DeploymentConfig does not have any rollouts
    • DeploymentConfigs is paused

 

Acceptance Criteria:

  • Add the 'Restart rollout' action button for the Deployment resource to both action menu and kebab menu
  • Add the 'Retry rollout' action button for the DeploymentConfig resource to both action menu and kebab menu

 

BACKGROUND:

OpenShift console will be updated to allow rollout restart deployment from the console itself.

Currently, from the OpenShift console, for the resource “deploymentconfigs” we can only start and pause the rollout, and for the resource “deployment” we can only resume the rollout. None of the resources (deployment & deployment config) has this option to restart the rollout. So, that is the reason why the customer wants this functionality to perform the same action from the CLI as well as the OpenShift console.

The customer wants developers who are not fluent with the oc tool and terminal utilities, can use the console instead of the terminal to restart deployment, just like we use to do it through CLI using the command “oc rollout restart deploy/<deployment-name>“.
Usually when developers change the config map that deployment uses they have to restart pods. Currently, the developers have to use the oc rollout restart deployment command. The customer wants the functionality to get this button/menu to perform the same action from the console as well.

Design
Doc: https://docs.google.com/document/d/1i-jGtQGaA0OI4CYh8DH5BBIVbocIu_dxNt3vwWmPZdw/edit

When OCP is performing cluster upgrade user should be notified about this fact.

There are two possibilities how to surface the cluster upgrade to the users:

  • Display a console notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Global notification throughout OCP web UI saying that the cluster is currently under upgrade.
  • Have an alert firing for all the users of OCP stating the cluster is undergoing an upgrade. 

 

AC:

  • Console-operator will create a ConsoleNotification CR when the cluster is being upgraded. Once the upgrade is done console-operator will remote that CR. These are the three statuses based on which we are determining if the cluster is being upgraded.
  • Add unit tests

 

Note: We need to decide if we want to distinguish this particular notification by a different color? ccing Ali Mobrem 

 

Created from: https://issues.redhat.com/browse/RFE-3024

Feature Overview

  • As an infrastructure owner, I want a repeatable method to quickly deploy the initial OpenShift cluster.
  • As an infrastructure owner, I want to install the first (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters.

Goals

  • Enable customers and partners to successfully deploy a single “first” cluster in disconnected, on-premises settings

Requirements

4.11 MVP Requirements

  • Customers and partners needs to be able to download the installer
  • Enable customers and partners to deploy a single “first” cluster (cluster 0) using single node, compact, or highly available topologies in disconnected, on-premises settings
  • Installer must support advanced network settings such as static IP assignments, VLANs and NIC bonding for on-premises metal use cases, as well as DHCP and PXE provisioning environments.
  • Installer needs to support automation, including integration with third-party deployment tools, as well as user-driven deployments.
  • In the MVP automation has higher priority than interactive, user-driven deployments.
  • For bare metal deployments, we cannot assume that users will provide us the credentials to manage hosts via their BMCs.
  • Installer should prioritize support for platforms None, baremetal, and VMware.
  • The installer will focus on a single version of OpenShift, and a different build artifact will be produced for each different version.
  • The installer must not depend on a connected registry; however, the installer can optionally use a previously mirrored registry within the disconnected environment.

Use Cases

  • As a Telco partner engineer (Site Engineer, Specialist, Field Engineer), I want to deploy an OpenShift cluster in production with limited or no additional hardware and don’t intend to deploy more OpenShift clusters [Isolated edge experience].
  • As a Enterprise infrastructure owner, I want to manage the lifecycle of multiple clusters in 1 or more sites by first installing the first  (management, hub, “cluster 0”) cluster to manage other (standalone, hub, spoke, hub of hubs) clusters [Cluster before your cluster].
  • As a Partner, I want to package OpenShift for large scale and/or distributed topology with my own software and/or hardware solution.
  • As a large enterprise customer or Service Provider, I want to install a “HyperShift Tugboat” OpenShift cluster in order to offer a hosted OpenShift control plane at scale to my consumers (DevOps Engineers, tenants) that allows for fleet-level provisioning for low CAPEX and OPEX, much like AKS or GKE [Hypershift].
  • As a new, novice to intermediate user (Enterprise Admin/Consumer, Telco Partner integrator, RH Solution Architect), I want to quickly deploy a small OpenShift cluster for Poc/Demo/Research purposes.

Questions to answer…

  •  

Out of Scope

Out of scope use cases (that are part of the Kubeframe/factory project):

  • As a Partner (OEMs, ISVs), I want to install and pre-configure OpenShift with my hardware/software in my disconnected factory, while allowing further (minimal) reconfiguration of a subset of capabilities later at a different site by different set of users (end customer) [Embedded OpenShift].
  • As an Infrastructure Admin at an Enterprise customer with multiple remote sites, I want to pre-provision OpenShift centrally prior to shipping and activating the clusters in remote sites.

Background, and strategic fit

  • This Section: What does the person writing code, testing, documenting need to know? What context can be provided to frame this feature.

Assumptions

  1. The user has only access to the target nodes that will form the cluster and will boot them with the image presented locally via a USB stick. This scenario is common in sites with restricted access such as government infra where only users with security clearance can interact with the installation, where software is allowed to enter in the premises (in a USB, DVD, SD card, etc.) but never allowed to come back out. Users can't enter supporting devices such as laptops or phones.
  2. The user has access to the target nodes remotely to their BMCs (e.g. iDrac, iLo) and can map an image as virtual media from their computer. This scenario is common in data centers where the customer provides network access to the BMCs of the target nodes.
  3. We cannot assume that we will have access to a computer to run an installer or installer helper software.

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

 

References

 

 

Set the ClusterDeployment CRD to deploy OpenShift in FIPS mode and make sure that after deployment the cluster is set in that mode

In order to install FIPS compliant clusters, we need to make sure that installconfig + agentoconfig based deployments take into account the FIPS config in installconfig.

This task is about passing the config to agentclusterinstall so it makes it into the iso. Once there, AGENT-374 will give it to assisted service

Epic Goal

As an OpenShift infrastructure owner, I want to deploy a cluster zero with RHACM or MCE and have the required components installed when the installation is completed

Why is this important?

BILLI makes it easier to deploy a cluster zero. BILLI users know at installation time what the purpose of their cluster is when they plan the installation. Day-2 steps are necessary to install operators and users, especially when automating installations, want to finish the installation flow when their required components are installed.

Acceptance Criteria

  • A user can provide MCE manifests and have it installed without additional manual steps after the installation is completed
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

User Story:

As a customer, I want to be able to:

  • Install MCE with the agent-installer

so that I can achieve

  • create an MCE hub with my openshift install

Acceptance Criteria:

Description of criteria:

  • Upstream documentation including examples of the extra manifests needed
  • Unit tests that include MCE extra manifests
  • Ability to install MCE using agent-installer is tested
  • Point 3

(optional) Out of Scope:

We are only allowing the user to provide extra manifests to install MCE at this time. We are not adding an option to "install mce" on the command line (or UI)

Engineering Details:

This requires/does not require a design proposal.
This requires/does not require a feature gate.

Epic Goal

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with dual-stack IPv4/IPv6

As a OpenShift infrastructure owner, I want to deploy OpenShift clusters with single-stack IPv6

Why is this important?

IPv6 and dual-stack clusters are requested often by customers, especially from Telco customers. Working with dual-stack clusters is a requirement for many but also a transition into a single-stack IPv6 clusters, which for some of our users is the final destination.

Acceptance Criteria

  • Agent-based installer can deploy IPv6 clusters
  • Agent-based installer can deploy dual-stack clusters
  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Previous Work

Karim's work proving how agent-based can deploy IPv6: IPv6 deploy with agent based installer]

Done Checklist * CI - CI is running, tests are automated and merged.

  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>|

For dual-stack installations the agent-cluster-install.yaml must have both an IPv4 and IPv6 subnet in the networkking.MachineNetwork or assisted-service will throw an error. This field is in InstallConfig but it must be added to agent-cluster-install in its Generate().

For IPv4 and IPv6 installs, setting up the MachineNetwork is not needed but it also does not cause problems if its set, so it should be fine to set it all times.

Epic Goal

  • Rebase cluster autoscaler on top of Kubernetes 1.25

Why is this important?

  • Need to pick up latest upstream changes

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a user I would like to see all the events that the autoscaler creates, even duplicates. Having the CAO set this flag will allow me to continue to see these events.

Background

We have carried a patch for the autoscaler that would enable the duplication of events. This patch can now be dropped because the upstream added a flag for this behavior in https://github.com/kubernetes/autoscaler/pull/4921

Steps

  • add the --record-duplicated-events flag to all autoscaler deployments from the CAO

Stakeholders

  • openshift eng

Definition of Done

  • autoscaler continues to work as expected and produces events for everything
  • Docs
  • this does not require documentation as it preserves existing behavior and provides no interface for user interaction
  • Testing
  • current tests should continue to pass

Feature Overview

Add GA support for deploying OpenShift to IBM Public Cloud

Goals

Complete the existing gaps to make OpenShift on IBM Cloud VPC (Next Gen2) General Available

Requirements

Optional requirements

  • OpenShift can be deployed using Mint mode and STS for cloud provider credentials (future release, tbd)
  • OpenShift can be deployed in disconnected mode https://issues.redhat.com/browse/SPLAT-737)
  • OpenShift on IBM Cloud supports User Provisioned Infrastructure (UPI) deployment method (future release, 4.14?)

Epic Goal

  • Enable installation of private clusters on IBM Cloud. This epic will track associated work.

Why is this important?

  • This is required MVP functionality to achieve GA.

Scenarios

  1. Install a private cluster on IBM Cloud.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Background and Goal

Currently in OpenShift we do not support distributing hotfix packages to cluster nodes. In time-sensitive situations, a RHEL hotfix package can be the quickest route to resolving an issue. 

Acceptance Criteria

  1. Under guidance from Red Hat CEE, customers can deploy RHEL hotfix packages to MachineConfigPools.
  2. Customers can easily remove the hotfix when the underlying RHCOS image incorporates the fix.

Before we ship OCP CoreOS layering in https://issues.redhat.com/browse/MCO-165 we need to switch the format of what is currently `machine-os-content` to be the new base image.

The overall plan is:

  • Publish the new base image as `rhel-coreos-8` in the release image
  • Also publish the new extensions container (https://github.com/openshift/os/pull/763) as `rhel-coreos-8-extensions`
  • Teach the MCO to use this without also involving layering/build controller
  • Delete old `machine-os-content`

As a OCP CoreOS layering developer, having telemetry data about number of cluster using osImageURL will help understand how broadly this feature is getting used and improve accordingly.

Acceptance Criteria:

  • Cluster using Custom osImageURL is available via telemetry

After https://github.com/openshift/os/pull/763 is in the release image, teach the MCO how to use it. This is basically:

  • Schedule the extensions container as a kubernetes service (just serves a yum repo via http)
  • Change the MCD to write a file into `/etc/yum.repos.d/machine-config-extensions.repo` that consumes it instead of what it does now in pulling RPMs from the mounted container filesystem

 

Why?

  • Decouple control and data plane. 
    • Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.
  • Improve security
    • Shift credentials out of cluster that support the operation of core platform vs workload
  • Improve cost
    • Allow a user to toggle what they don’t need.
    • Ensure a smooth path to scale to 0 workers and upgrade with 0 workers.

 

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure , and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

 

 

Doc: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

cluster-snapshot-controller-operator is running on the CP. 

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

As HyperShift Cluster Instance Admin, I want to run cluster-csi-snapshot-controller-operator in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Move creation of manifests/08_webhook_service.yaml from CVO to the operator - it needs to be created in the management cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift by
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Don’t create operand’s PodDisruptionBudget?
    • Update ValidationWebhookConfiguration to point directly to URL exposed by manifests/08_webhook_service.yaml instead of a Service. The Service is not available in the guest cluster.
    • Pass only the guest kubeconfig to the operands (both the webhook and csi-snapshot-controller).
    • Update unit tests to handle two kube clients.

Exit criteria:

  • cluster-csi-snapshot-controller-operator runs in the management cluster in HyperShift
  • csi-snapshot-controller runs in the management cluster in HyperShift
  • It is possible to take & restore volume snapshot in the guest cluster.
  • No regressions in standalone OCP.

As OpenShift developer I want cluster-csi-snapshot-controller-operator to use existing controllers in library-go, so I don’t need to maintain yet another code that does the same thing as library-go.

  • Check and remove manifests/03_configmap.yaml, it does not seem to be useful.
  • Check and remove manifests/03_service.yaml, it does not seem to be useful (at least now).
  • Use DeploymentController from library-go to sync Deployments.
  • Get rid of common/ package? It does not seem to be useful.
  • Use StaticResourceController for static content, including the snapshot CRDs.

Note: if this refactoring introduces any new conditions, we must make sure that 4.11 snapshot controller clears them to support downgrade! This will need 4.11 BZ + z-stream update!

Similarly, if some conditions become obsolete / not managed by any controller, they must be cleared by 4.12 operator.

Exit criteria:

  • The operator code is smaller.
  • No regressions in standalone OCP.
  • Upgrade/downgrade from/to standalone OCP 4.11 works.

Epic Goal

  • To improve debug-ability of ovn-k in hypershift
  • To verify the stability of of ovn-k in hypershift
  • To introduce a EgressIP reach-ability check that will work in hypershift

Why is this important?

  • ovn-k is supposed to be GA in 4.12. We need to make sure it is stable, we know the limitations and we are able to debug it similar to the self hosted cluster.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated

Dependencies (internal and external)

  1. This will need consultation with the people working on HyperShift

Previous Work (Optional):

  1. https://issues.redhat.com/browse/SDN-2589

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Overview 

Customers do not pay Red Hat more to run HyperShift control planes and supporting infrastructure than Standalone control planes and supporting infrastructure.

Assumption

  • A customer will be able to associate a cluster as “Infrastructure only”
  • E.g. one option: management cluster has role=master, and role=infra nodes only, control planes are packed on role=infra nodes
  • OR the entire cluster is labeled infrastructure, and node roles are ignored.
  • Anything that runs on a master node by default in Standalone that is present in HyperShift MUST be hosted and not run on a customer worker node.

DoD 

Run cluster-storage-operator (CSO) + AWS EBS CSI driver operator + AWS EBS CSI driver control-plane Pods in the management cluster, run the driver DaemonSet in the hosted cluster.

More information here: https://docs.google.com/document/d/1sXCaRt3PE0iFmq7ei0Yb1svqzY9bygR5IprjgioRkjc/edit 

 

As HyperShift Cluster Instance Admin, I want to run cluster-storage-operator (CSO) in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Tag manifests of objects that should not be deployed by CVO in HyperShift
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
    • Pass only the guest kubeconfig to the operands (AWS EBS CSI driver operator).

Exit criteria:

  • CSO and AWS EBS CSI driver operator runs in the management cluster in HyperShift
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

As OCP support engineer I want the same guest cluster storage-related objects in output of "hypershift dump cluster --dump-guest-cluster" as in "oc adm must-gather ", so I can debug storage issues easily.

 

must-gather collects: storageclasses persistentvolumes volumeattachments csidrivers csinodes volumesnapshotclasses volumesnapshotcontents

hypershift collects none of this, the relevant code is here: https://github.com/openshift/hypershift/blob/bcfade6676f3c344b48144de9e7a36f9b40d3330/cmd/cluster/core/dump.go#L276

 

Exit criteria:

  • verify that hypershift dump cluster --dump-guest-cluster has storage objects from the guest cluster.

As HyperShift Cluster Instance Admin, I want to run AWS EBS CSI driver operator + control plane of the CSI driver in the management cluster, so the guest cluster runs just my applications.

  • Add a new cmdline option for the guest cluster kubeconfig file location
  • Parse both kubeconfigs:
    • One from projected service account, which leads to the management cluster.
    • Second from the new cmdline option introduced above. This one leads to the guest cluster.
  • Only on HyperShift:
    • When interacting with Kubernetes API, carefully choose the right kubeconfig to watch / create / update objects in the right cluster.
    • Replace namespaces in all Deployments and other objects that are created in the management cluster. They must be created in the same namespace as the operator.
  •  
  •  
    • Pass only the guest kubeconfig to the operand (control-plane Deployment of the CSI driver).

Exit criteria:

  • Control plane Deployment of AWS EBS CSI driver runs in the management cluster in HyperShift.
  • Storage works in the guest cluster.
  • No regressions in standalone OCP.

OC mirror is GA product as of Openshift 4.11 .

The goal of this feature is to solve any future customer request for new features or capabilities in OC mirror 

Epic Goal

  • Mirror to mirror operations and custom mirroring flows required by IBM CloudPak catalog management

Why is this important?

  • IBM needs additional customization around the actual mirroring of images to enable CloudPaks to fully adopt OLM-style operator packaging and catalog management
  • IBM CloudPaks introduce additional compute architectures, increasing the download volume by 2/3rds to day, we need the ability to effectively filter non-required image versions of OLM operator catalogs during filtering for other customers that only require a single or a subset of the available image architectures
  • IBM CloudPaks regularly run on older OCP versions like 4.8 which require additional work to be able to read the mirrored catalog produced by oc mirror

Scenarios

  1. Customers can use the oc utility and delegate the actual image mirror step to another tool
  2. Customers can mirror between disconnected registries using the oc utility
  3. The oc utility supports filtering manifest lists in the context of multi-arch images according to the sparse manifest list proposal in the distribution spec

Acceptance Criteria

  • Customers can use the oc utility to mirror between two different air-gapped environments
  • Customers can specify the desired computer architectures and oc mirror will create sparse manifest lists in the target registry as a result

Dependencies (internal and external)

Previous Work:

  1. WRKLDS-369
  2. Disconnected Mirroring Improvement Proposal

Related Work:

  1. https://github.com/opencontainers/distribution-spec/pull/310
  2. https://github.com/distribution/distribution/pull/3536
  3. https://docs.google.com/document/d/10ozLoV7sVPLB8msLx4LYamooQDSW-CAnLiNiJ9SER2k/edit?usp=sharing

Pre-Work Objectives

Since some of our requirements from the ACM team will not be available for the 4.12 timeframe, the team should work on anything we can get done in the scope of the console repo so that when the required items are available in 4.13, we can be more nimble in delivering GA content for the Unified Console Epic.

Overall GA Key Objective
Providing our customers with a single simplified User Experience(Hybrid Cloud Console)that is extensible, can run locally or in the cloud, and is capable of managing the fleet to deep diving into a single cluster. 
Why customers want this?

  1. Single interface to accomplish their tasks
  2. Consistent UX and patterns
  3. Easily accessible: One URL, one set of credentials

Why we want this?

  • Shared code -  improve the velocity of both teams and most importantly ensure consistency of the experience at the code level
  • Pre-built PF4 components
  • Accessibility & i18n
  • Remove barriers for enabling ACM

Phase 2 Goal: Productization of the united Console 

  1. Enable user to quickly change context from fleet view to single cluster view
    1. Add Cluster selector with “All Cluster” Option. “All Cluster” = ACM
    2. Shared SSO across the fleet
    3. Hub OCP Console can connect to remote clusters API
    4. When ACM Installed the user starts from the fleet overview aka “All Clusters”
  2. Share UX between views
    1. ACM Search —> resource list across fleet -> resource details that are consistent with single cluster details view
    2. Add Cluster List to OCP —> Create Cluster

As a developer I would like to disable clusters like *KS that we can't support for multi-cluster (for instance because we can't authenticate). The ManagedCluster resource has a vendor label that we can use to know if the cluster is supported.

cc Ali Mobrem Sho Weimer Jakub Hadvig 

UPDATE: 9/20/22 : we want an allow-list with OpenShift, ROSA, ARO, ROKS, and  OpenShiftDedicated

Acceptance criteria:

  • Investigate if console-operator should pass info about which cluster are supported and unsupported to the frontend
  • Unsupported clusters should not appear in the cluster dropdown
  • Unsupported clusters based off
    • defined vendor label
    • non 4.x ocp clusters

Feature Overview

RHEL CoreOS should be updated to RHEL 9.2 sources to take advantage of newer features, hardware support, and performance improvements.

 

Requirements

  • RHEL 9.x sources for RHCOS builds starting with OCP 4.13 and RHEL 9.2.

 

Requirement Notes isMvp?
CI - MUST be running successfully with test automation This is a requirement for ALL features. YES
Release Technical Enablement Provide necessary release enablement details and documents. YES

(Optional) Use Cases

  • 9.2 Preview via Layering No longer necessary assuming we stay the course of going all in on 9.2

Assumptions

  • ...

Customer Considerations

  • ...

Documentation Considerations

Questions to be addressed:

  • What educational or reference material (docs) is required to support this product feature? For users/admins? Other functions (security officers, etc)?
  • Does this feature have doc impact?
  • New Content, Updates to existing content, Release Note, or No Doc Impact
  • If unsure and no Technical Writer is available, please contact Content Strategy.
  • What concepts do customers need to understand to be successful in [action]?
  • How do we expect customers will use the feature? For what purpose(s)?
  • What reference material might a customer want/need to complete [action]?
  • Is there source material that can be used as reference for the Technical Writer in writing the content? If yes, please link if available.
  • What is the doc impact (New Content, Updates to existing content, or Release Note)?

PROBLEM

We would like to improve our signal for RHEL9 readiness by increasing internal engineering engagement and external partner engagement on our community OpehShift offering, OKD.

PROPOSAL

Adding OKD to run on SCOS (a CentOS stream for CoreOS) brings the community offering closer to what a partner or an internal engineering team might expect on OCP.

ACCEPTANCE CRITERIA

Image has been switched/included: 

DEPENDENCIES

The SCOS build payload.

RELATED RESOURCES

OKD+SCOS proposal: https://docs.google.com/presentation/d/1_Xa9Z4tSqB7U2No7WA0KXb3lDIngNaQpS504ZLrCmg8/edit#slide=id.p

OKD+SCOS work draft: https://docs.google.com/document/d/1cuWOXhATexNLWGKLjaOcVF4V95JJjP1E3UmQ2kDVzsA/edit

 

Acceptance Criteria

A stable OKD on SCOS is built and available to the community sprintly.

 

This comes up when installing ipi-on-aws on arm64 with the custom payload build at quay.io/aleskandrox/okd-release:4.12.0-0.okd-centos9-full-rebuild-arm64 that is using scos as machine-content-os image

 

```

[root@ip-10-0-135-176 core]# crictl logs c483c92e118d8
2022-08-11T12:19:39+00:00 [cnibincopy] FATAL ERROR: Unsupported OS ID=scos
```

 

The probable fix has to land on https://github.com/openshift/cluster-network-operator/blob/master/bindata/network/multus/multus.yaml#L41-L53

The details of this Jira Card are restricted (Red Hat Employee and Contractors only)
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Feature Overview (aka. Goal Summary)  

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

Some customer cases have revealed scenarios where the MCO state reporting is misleading and therefore could be unreliable to base decisions and automation on.

In addition to correcting some incorrect states, the MCO will be enhanced for a more granular view of update rollouts across machines.

The MCO should properly report its state in a way that's consistent and able to be understood by customers, troubleshooters, and maintainers alike. 

For this epic, "state" means "what is the MCO doing?" – so the goal here is to try to make sure that it's always known what the MCO is doing. 

This includes: 

  • Conditions
  • Some Logging 
  • Possibly Some Events 

While this probably crosses a little bit into the "status" portion of certain MCO objects, as some state is definitely recorded there, this probably shouldn't turn into a "better status reporting" epic.  I'm interpreting "status" to mean "how is it going" so status is maybe a "detail attached to a state". 

 

Exploration here: https://docs.google.com/document/d/1j6Qea98aVP12kzmPbR_3Y-3-meJQBf0_K6HxZOkzbNk/edit?usp=sharing

 

https://docs.google.com/document/d/17qYml7CETIaDmcEO-6OGQGNO0d7HtfyU7W4OMA6kTeM/edit?usp=sharing

 

The current property description is:

configuration represents the current MachineConfig object for the machine config pool.

But in a 4.12.0-ec.4 cluster, the actual semantics seem to be something closer to "the most recent rendered config that we completely leveled on". We should at least update the godocs to be more specific about the intended semantics. And perhaps consider adjusting the semantics?

Complete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were completed when this image was assembled

This epic contains all the Dynamic Plugins related stories for OCP release-4.11 

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

  •  

This story only covers API components. We will create a separate story for other utility functions.

Today we are generating documentation for Console's Dynamic Plugin SDK in
frontend/packages/dynamic-plugin-sdk. We are missing ts-doc for a set of hooks and components.

We are generating the markdown from the dynamic-plugin-sdk using

yarn generate-doc

Here is the list of the API that the dynamic-plugin-sdk is exposing:

https://gist.github.com/spadgett/0ddefd7ab575940334429200f4f7219a

Acceptance Criteria:

  • Add missing jsdocs for the API that dynamic-plugin-sdk exposes

Out of Scope:

  • This does not include work for integrating the API docs into the OpenShift docs
  • This does not cover other public utilities, only components.

An epic we can duplicate for each release to ensure we have a place to catch things we ought to be doing regularly but can tend to fall by the wayside.

As a developer, I want to be able to clean up the css markup after making the css / scss changes required for dark mode and remove any old unused css / scss content. 

 

Acceptance criteria:

  • Remove any unused scss / css content after revamping for dark mode

1. Proposed title of this feature request
Basic authentication for Helm Chart repository in helmchartrepositories.helm.openshift.io CRD.

2. What is the nature and description of the request?
As of v4.6.9, the HelmChartRepository CRD only supports client TLS authentication through spec.connectionConfig.tlsClientConfig.

3. Why do you need this? (List the business requirements here)
Basic authentication is widely used by many chart repositories managers (Nexus OSS, Artifactory, etc.)
Helm CLI also supports them with the helm repo add command.
https://helm.sh/docs/helm/helm_repo_add/

4. How would you like to achieve this? (List the functional requirements here)
Probably by extending the CRD:

spec:
connectionConfig:
username: username
password:
secretName: secret-name

The secret namespace should be openshift-config to align with the tlsClientConfig behavior.

5. For each functional requirement listed in question 4, specify how Red Hat and the customer can test to confirm the requirement is successfully implemented.
Trying to pull helm charts from remote private chart repositories that has disabled anonymous access and offers basic authentication.
E.g.: https://github.com/sonatype/docker-nexus

Owner: Architect:

Story (Required)

As an OCP user I will like to be able to install helm charts from repos added to ODC with basic authentication fields populated

Background (Required)

We need to support helm installs for Repos that have the basic authentication secret name and namespace.

Glossary

Out of scope

Updating the ProjectHelmChartRepository CRD, already done in diff story
Supporting the HelmChartRepository CR, this feature will be scoped first to project/namespace scope repos.

In Scope

<Defines what is included in this story>

Approach(Required)

If the new fields for basic auth are set in the repo CR then use those credentials when making API calls to helm to install/upgrade charts. We will error out if user logged in does not have access to the secret referenced by Repo CR. If basic auth fields are not present we assume is not an authenticated repo.

Dependencies

Nonet

Edge Case

NA

Acceptance Criteria

I can list, install and update charts on authenticated repos from ODC
Needs Documentation both upstream and downstream
Needs new unit test covering repo auth

INVEST Checklist

Dependencies identified
Blockers noted and expected delivery timelines set
Design is implementable
Acceptance criteria agreed upon
Story estimated

Legend

Unknown
Verified
Unsatisfied

Epic Goal

  • We need the installer to accept a LB type from user and then we could set type of LB in the following object.
    oc get ingress.config.openshift.io/cluster -o yaml
    Then we can fetch info from this object and reconcile the operator to have the NLB changes reflected.

 

This is an API change and we will consider this as a feature request.

Why is this important?

https://issues.redhat.com/browse/NE-799 Please check this for more details

 

Scenarios

https://issues.redhat.com/browse/NE-799 Please check this for more details

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. installer
  2. ingress operator

Previous Work (Optional):

 No

Open questions::

N/A

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We need tests for the ovirt-csi-driver and the cluster-api-provider-ovirt. These tests help us to

  • minimize bugs,
  • reproduce and fix them faster and
  • pin down current behavior of the driver

Also, having dedicated tests on lower levels with a smaller scope (unit, integration, ...) has the following benefits:

  • fast feedback cycle (local test execution)
  • developer in-code documentation
  • easier onboarding for new contributers
  • lower resource consumption
The details of this Jira Card are restricted (Red Hat Employee and Contractors only)

Description

As a user, I would like to be informed in an intuitive way,  when quotas have been reached in a namespace

Acceptance Criteria

  1. Show an alert banner on the Topology and add page for this project/namespace when there is a RQ (Resource Quota) / ACRQ (Applied Cluster Resource Quota) issue
    PF guideline: https://www.patternfly.org/v4/components/alert/design-guidelines#using-alerts 
  2. The above alert should have a CTA link to the search page with all RQ, ACRQ and if there is just one show the details page for the same
  3. For RQ, ACRQ list view show one more column called status with details as shown in the project view.

Additional Details:

 

Refer below for more details 

Description

As a user, In the topology view, I would like to be updated intuitively if any of the deployments have reached quota limits

Acceptance Criteria

  1. Show a yellow border around deployments if any of the deployments have reached the quota limit
  2. For deployments, if there are any errors associated with resource limits or quotas, include a warning alert in the side panel.
    1. If we know resource limits are the cause, include link to Edit resource limits
    2. If we know pod count is the cause, include a link to Edit pod count

Additional Details:

 

Refer below for more details 

Goal

Provide a form driven experience to allow cluster admins to manage the perspectives to meet the ACs below.

Problem:

We have heard the following requests from customers and developer advocates:

  • Some admins do not want to provide access to the Developer Perspective from the console
  • Some admins do not want to provide non-priv users access to the Admin Perspective from the console

Acceptance criteria:

  1. Cluster administrator is able to "hide" the admin perspective for non-priv users
  2. Cluster administrator is able to "hide" the developer perspective for all users
  3. Be user that User Preferences for individual users behaves appropriately. If only one perspective is available, the perspective switcher is not needed.

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As an admin, I want to hide the admin perspective for non-privileged users or hide the developer perspective for all users

Based on the https://issues.redhat.com/browse/ODC-6730 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

  1. Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to hide user perspective(s) based on the customization.

Acceptance Criteria

  1. Hide perspective(s) based on the customization
    1. When the admin perspective is disabled -> we hide the admin perspective for all unprivileged users
    2. When the dev perspective is disabled -> we hide the dev perspective for all users
  2. When all the perspectives are hidden from a user or for all users, show the Admin perspective by default

Additional Details:

Description

As an admin, I want to be able to use a form driven experience  to hide user perspective(s)

Acceptance Criteria

  1. Add checkboxes with the options
    1. Hide "Administrator" perspective for non-privileged users
    2.  Hide "Developer" perspective for all users
  2. The console configuration CR should be updated as per the selected option

Additional Details:

Description

As an admin, I should be able to see a code snippet that shows how to add user perspectives

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add user perspectives

To support the cluster-admin to configure the perspectives correctly, the developer console should provide a code snippet for the customization of yaml resource (Console CRD).

Customize Perspective Enhancement PR: https://github.com/openshift/enhancements/pull/1205

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML which supports the admin to add user perspectives

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Come up with a consistent way to detect node down on OCP and hypershift. Current mechanism for OCP (probe port 9) does not work for hypershift, meaning, hypershift node down detection will be longer (~40 secs). We should aim to have a common mechanism for both. As well, we should consider alternatives to the probing port 9. Perhaps BFD, or other detection.
  • Get clarification on node down detection times. Some customers have (apparently) asked for detection on the order of 100ms, recommendation is to use multiple Egress IPs, so this may not be a hard requirement. Need clarification from PM/Customers.

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Add sock proxy to cluster-network-operator so egressip can use grpc to reach worker nodes.
 
With the introduction of grpc as means for determining the state of a given egress node, hypershift should
be able to leverage socks proxy and become able to know the state of each egress node.
 
References relevant to this work:
1281-network-proxy
[+https://coreos.slack.com/archives/C01C8502FMM/p1658427627751939+]
[+https://github.com/openshift/hypershift/pull/1131/commits/28546dc587dc028dc8bded715847346ff99d65ea+]

Incomplete Epics

This section includes Jira cards that are linked to an Epic, but the Epic itself is not linked to any Feature. These epics were not completed when this image was assembled

Epic Goal

  • Update OpenShift components that are owned by the Builds + Jenkins Team to use Kubernetes 1.25

Why is this important?

  • Our components need to be updated to ensure that they are using the latest bug/CVE fixes, features, and that they are API compatible with other OpenShift components.

Acceptance Criteria

  • Existing CI/CD tests must be passing

This is epic tracks "business as usual" requirements / enhancements / bug fixing of Insights Operator.

Today the links point at a rule-scoped page, but that page lacks information about recommended resolution.  You can click through by cluster ID to your specific cluster and get that recommendation advice, but it would be more convenient and less confusing for customers if we linked directly to the cluster-scoped recommendation page.

We can implement by updating the template here to be:

fmt.Sprintf("https://console.redhat.com/openshift/insights/advisor/clusters/%s?first=%s%%7C%s", clusterID, ruleIDStr, rec.ErrorKey)

or something like that.

 

unknowns

request is clear, solution/implementation to be further clarified

This epic contains all the Dynamic Plugins related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

Acceptance Criteria

Currently the ConsolePlugins API version is v1alpha1. Since we are going GA with dynamic plugins we should be creating a v1 version.

This would require updates in following repositories:

  1. openshift/api (add the v1 version and generate a new CRD)
  2. openshift/client-go (picku the changes in the openshift/api repo and generate clients & informers for the new v1 version)
  3. openshift/console-operator repository will using both the new v1 version and v1alpha1 in code and manifests folder.

AC:

  • both v1 and v1alpha1 ConsolePlugins should be passed to the console-config.yaml when the plugins are enabled and present on the cluster.

 

NOTE: This story does not include the conversion webhook change which will be created as a follow on story

Following https://coreos.slack.com/archives/C011BL0FEKZ/p1650640804532309, it would be useful for us (network observability team) to have access to ResourceIcon in dynamic-plugin-sdk.

Currently ResourceLink is exported but not ResourceIcon

 

AC:

  • Require the ResourceIcon  from public to dynamic-plugin-sdk
  • Add the component to the dynamic-demo-plugin
  • Add a CI test to check for the ResourceIcon component

 

The console has good error boundary components that are useful for dynamic plugin.
Exposing them will enable the plugins to get the same look and feel of handling react errors as console
The minimum requirement right now is to expose the ErrorBoundaryFallbackPage component from
https://github.com/openshift/console/blob/master/frontend/packages/console-shared/src/components/error/fallbacks/ErrorBoundaryFallbackPage.tsx

The extension `console.dashboards/overview/detail/item` doesn't constrain the content to fit the card.

The details-card has an expectation that a <dd> item will be the last item (for spacing between items). Our static details-card items use a component called 'OverviewDetailItem'. This isn't enforced in the extension and can cause undesired padding issues if they just do whatever they want.

I feel our approach here should be making the extension take the props of 'OverviewDetailItem' where 'children' is the new 'component'.

Acceptance Criteria:

  • Deprecate the old extension (in docs, with date/stamp)
  • Make a new extension that applies a stricter type
  • Include this new extension next to the old one (with the error boundary around it)

`@openshift-console/plugin-shared` (NPM) is a package that will contain shared components that can be upversioned separately by the Plugins so they can keep core compatibility low but upversion and support more shared components as we need them.

This isn't documented today. We need to do that.

Acceptance Criteria

  • Add a note in the "SDK packages" section of the README about the existence of this package and it's purpose
    • The purpose of being a static utility delivery library intended not to be tied to OpenShift Console versions and compatible with multiple version of OpenShift Console

We neither use nor support static plugin nav extensions anymore so we should remove the API in the static plugin SDK and get rid of related cruft in our current nav components.

 

AC: Remove static plugin nav extensions code. Check the navigation code for any references to the old API.

when defining two proxy endpoints, 
apiVersion: console.openshift.io/v1alpha1
kind: ConsolePlugin
metadata:
...
name: forklift-console-plugin
spec:
displayName: Console Plugin Template
proxy:

  • alias: forklift-inventory
    authorize: true
    service:
    name: forklift-inventory
    namespace: konveyor-forklift
    port: 8443
    type: Service
  • alias: forklift-must-gather-api
    authorize: true
    service:
    name: forklift-must-gather-api
    namespace: konveyor-forklift
    port: 8443
    type: Service

service:
basePath: /
I get two proxy endpoints
/api/proxy/plugin/forklift-console-plugin/forklift-inventory
and
/api/proxy/plugin/forklift-console-plugin/forklift-must-gather-api

but both proxy to the `forklift-must-gather-api` service

e.g.
curl to:
[server url]/api/proxy/plugin/forklift-console-plugin/forklift-inventory
will point to the `forklift-must-gather-api` service, instead of the `forklift-inventory` service

Move `frontend/public/components/nav` to `packages/console-app/src/components/nav` and address any issues resulting from the move.

There will be some expected lint errors relating to cyclical imports. These will require some refactoring to address.

During the development of https://issues.redhat.com/browse/CONSOLE-3062, it was determined additional information is needed in order to assist a user when troubleshooting a Failed plugin (see https://github.com/openshift/console/pull/11664#issuecomment-1159024959). As it stands today, there is no data available to the console to relay to the user regarding why the plugin Failed. Presumably, a message should be added to NotLoadedDynamicPlugin to address this gap.

 

AC: Add `message` property to NotLoadedDynamicPluginInfo type.

We should have a global notification or the `Console plugins` page (e.g., k8s/cluster/operator.openshift.io~v1~Console/cluster/console-plugins) should alert users when console operator `spec.managementState` is `Unmanaged` as changes to `enabled` for plugins will have no effect.

Based on API review CONSOLE-3145, we have decided to deprecate the following APIs:

  • useAccessReviewAllowed (use useAccessReview instead)
  • useSafetyFirst

cc Andrew Ballantyne Bryan Florkiewicz 

Currently our `api.md` does not generate docs with "tags" (aka `@deprecated`) – we'll need to add that functionality to the `generate-doc.ts` script. See the code that works for `console-extensions.md`

To align with https://github.com/openshift/dynamic-plugin-sdk, plugin metadata field dependencies as well as the @console/pluginAPI entry contained within should be made optional.

If a plugin doesn't declare the @console/pluginAPI dependency, the Console release version check should be skipped for that plugin.

This epic contains all the OLM related stories for OCP release-4.12

Epic Goal

  • Track all the stories under a single epic

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. `kuberneties.io/arch:arm64`, `kubernetes.io/arch:amd64` etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes. Each operator's PackageManifest contains a labels that indicates whats the operator's supported architecture, e.g.  `operatorframework.io/arch.s390x: supported`. An operator can be supported on multiple architectures

AC:

  1. Implement logic in the console's backend to read the set of architecture types from console-config.yaml and set it as a SERVER_FLAG.nodeArchitectures (Change similar to https://github.com/openshift/console/commit/39aabe171a2e89ed3757ac2146d252d087fdfd33)
  2. In Operator hub render only operators that are support on any given node, based on the SERVER_FLAG.nodeArchitectures field implemented in CONSOLE-3242.

 

OS and arch filtering: https://github.com/openshift/console/blob/2ad4e17d76acbe72171407fc1c66ca4596c8aac4/frontend/packages/operator-lifecycle-manager/src/components/operator-hub/operator-hub-items.tsx#L49-L86

 

@jpoulin is good to ask about heterogeneous clusters.

This enhancement Introduces support for provisioning and upgrading heterogenous architecture clusters in phases.

 

We need to scan through the compute nodes and build a set of supported architectures from those. Each node on the cluster has a label for architecture: e.g. kubernetes.io/arch=arm64, kubernetes.io/arch=amd64 etc. Based on the set of supported architectures console will need to surface only those operators in the Operator Hub, which are supported on our Nodes.

 

AC: 

  1. Implement logic in the console-operator that will scan though all the nodes and build a set of all the architecture types that the cluster nodes run on and pass it to the console-config.yaml
  2. Add unit and e2e test cases in the console-operator repository.

 

@jpoulin is good to ask about heterogeneous clusters.

Epic Goal

  • Enable OpenShift IPI Installer to deploy OCP to a shared VPC in GCP.
  • The host project is where the VPC and subnets are defined. Those networks are shared to one or more service projects.
  • Objects created by the installer are created in the service project where possible. Firewall rules may be the only exception.
  • Documentation outlines the needed minimal IAM for both the host and service project.

Why is this important?

  • Shared VPC's are a feature of GCP to enable granular separation of duties for organizations that centrally manage networking but delegate other functions and separation of billing. This is used more often in larger organizations where separate teams manage subsets of the cloud infrastructure. Enterprises that use this model would also like to create IPI clusters so that they can leverage the features of IPI. Currently organizations that use Shared VPC's must use UPI and implement the features of IPI themselves. This is repetative engineering of little value to the customer and an increased risk of drift from upstream IPI over time. As new features are built into IPI, organizations must become aware of those changes and implement them themselves instead of getting them "for free" during upgrades.

Scenarios

  1. Deploy cluster(s) into service project(s) on network(s) shared from a host project.

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story:

As a user, I want to be able to:

  • skip creating service accounts in Terraform when using passthrough credentialsMode.
  • pass the installer service account to Terraform to be used as the service account for instances when using passthrough credentialsMode.

so that I can achieve

  • creating an IPI cluster using Shared VPC networks using a pre-created service account with the necessary permissions in the Host Project.

Acceptance Criteria:

Description of criteria:

  • Upstream documentation
  • Point 1
  • Point 2
  • Point 3

(optional) Out of Scope:

Detail about what is specifically not being delivered in the story

Engineering Details:

Epic Goal

  • Support manifest lists by image streams and the integrated registry. Clients should be able to pull/push manifests lists from/into the integrated registry. They also should be able to import images via `oc import-image` and them pull them from the internal registry.

Why is this important?

  • Manifest lists are becoming more and more popular. Customers want to mirror manifest lists into the registry and be able to pull them by digest.

Scenarios

  1. Manifest lists can be pushed into the integrated registry
  2. Imported manifests list can be pulled from the integrated registry
  3. Image triggers work with manifest lists

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Existing functionality shouldn't change its behavior

Dependencies (internal and external)

  1. ...

Previous Work (Optional)

  1. https://github.com/openshift/enhancements/blob/master/enhancements/manifestlist/manifestlist-support.md

Open questions

  1. Can we merge creation of images without having the pruner?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

ACCEPTANCE CRITERIA

  • The ImageStream object should contain a new flag indicating that it refers to a manifest list
  • openshift-controller-manager uses new openshift/api code to import image streams
  • changing `importMode` of an image stream tag triggers a new import (i.e. updates generation in the tag spec)

NOTES

This is a follow up Epic to https://issues.redhat.com/browse/MCO-144, which aimed to get in-place upgrades for Hypershift. This epic aims to capture additional work to focus on using CoreOS/OCP layering into Hypershift, which has benefits such as:

 

 - removing or reducing the need for ignition

 - maintaining feature parity between self-driving and managed OCP models

 - adding additional functionality such as hotfixes

Currently not implemented, and will require the MCD hypershift mode to be adjusted to handle disruptionless upgrades like regular MCD

Right now in https://github.com/openshift/hypershift/pull/1258 you can only perform one upgrade at a time. Multiple upgrades will break due to controller logic

 

Properly create logic to handle manifest creation/updates and deletion, so the logic is more bulletproof

Changes made in METAL-1 open up opportunities to improve our handling of images by cleaning up redundant code that generates extra work for the user and extra load for the cluster.

We only need to run the image cache DaemonSet if there is a QCOW URL to be mirrored (effectively this means a cluster installed with 4.9 or earlier). We can stop deploying it for new clusters installed with 4.10 or later.

Currently, the image-customization-controller relies on the image cache running on every master to provide the shared hostpath volume containing the ISO and initramfs. The first step is to replace this with a regular volume and an init container in the i-c-c pod that extracts the images from machine-os-images. We can use the copy-metal -image-build flag (instead of -all used in the shared volume) to provide only the required images.

Once i-c-c has its own volume, we can switch the image extraction in the metal3 Pod's init container to use the -pxe flag instead of -all.

The machine-os-images init container for the image cache (not the metal3 Pod) can be removed. The whole image cache deployment is now optional and need only be started if provisioningOSDownloadURL is set (and in fact should be deleted if it is not).

We plan to build Ironic Container Images using RHEL9 as base image in OCP 4.12

This is required because the ironic components have abandoned support for CentOS Stream 8 and Python 3.6/3.7 upstream during the most recent development cycle that will produce the stable Zed release, in favor of CentOS Stream 9 and Python 3.8/3.9

More info on RHEL8 to RHEL9 transition in OCP can be found at https://docs.google.com/document/d/1N8KyDY7KmgUYA9EOtDDQolebz0qi3nhT20IOn4D-xS4

Epic Goal

  • To improve the reliability of disk cleaning before installation and to provide the user with sufficient warning regarding the consequences of the cleaning

Why is this important?

  • Insufficient cleaning can lead to installation failure
  • Insufficient warning can lead to complaints of unexpected data loss

Scenarios

  1.  

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

Description of the problem:

Cluster Installation fail if installation disk has lvm on raid:

Host: test-infra-cluster-3cc862c9-master-0, reached installation stage Failed: failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- mdadm --stop /dev/md0], Error exit status 1, LastOutput "mdadm: Cannot get exclusive access to /dev/md0:Perhaps a running process, mounted filesystem or active volume group?" 

How reproducible:

100%

Steps to reproduce:

1. Install a cluster while master nodes has disk with LVM on RAID (reproduces using test: https://gitlab.cee.redhat.com/ocp-edge-qe/kni-assisted-installer-auto/-/blob/master/api_tests/test_disk_cleanup.py#L97)

Actual results:

Installation failed

Expected results:

Installation success

Description of the problem:
When running assisted-installer on a machine where is more than one volume group per physical volume. Only the first volume group will be cleaned up. This leads to problems later and will lead to errors such as

Failed - failed executing nsenter [--target 1 --cgroup --mount --ipc --pid -- pvremove /dev/sda -y -ff], Error exit status 5, LastOutput "Can't open /dev/sda exclusively. Mounted filesystem? 

How reproducible:

Set up a VM with more than one volume group per physical volume. As an example, look at the following sample from a customer cluster.

List block devices
/usr/bin/lsblk -o NAME,MAJ:MIN,SIZE,TYPE,FSTYPE,KNAME,MODEL,UUID,WWN,HCTL,VENDOR,STATE,TRAN,PKNAME
NAME              MAJ:MIN   SIZE TYPE FSTYPE      KNAME MODEL            UUID                                   WWN                HCTL       VENDOR   STATE   TRAN PKNAME
loop0               7:0   125.9G loop xfs         loop0                  c080b47b-2291-495c-8cc0-2009ebc39839                                                       
loop1               7:1   885.5M loop squashfs    loop1                                                                                                             
sda                 8:0   894.3G disk             sda   INTEL SSDSC2KG96                                        0x55cd2e415235b2db 1:0:0:0    ATA      running sas  
|-sda1              8:1     250M part             sda1                                                          0x55cd2e415235b2db                                  sda
|-sda2              8:2     750M part ext2        sda2                   3aa73c72-e342-4a07-908c-a8a49767469d   0x55cd2e415235b2db                                  sda
|-sda3              8:3      49G part xfs         sda3                   ffc3ccfe-f150-4361-8ae5-f87b17c13ac2   0x55cd2e415235b2db                                  sda
|-sda4              8:4   394.2G part LVM2_member sda4                   Ua3HOc-Olm4-1rma-q0Ug-PtzI-ZOWg-RJ63uY 0x55cd2e415235b2db                                  sda
`-sda5              8:5     450G part LVM2_member sda5                   W8JqrD-ZvaC-uNK9-Y03D-uarc-Tl4O-wkDdhS 0x55cd2e415235b2db                                  sda
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sda5
sdb                 8:16  894.3G disk             sdb   INTEL SSDSC2KG96                                        0x55cd2e415235b31b 1:0:1:0    ATA      running sas  
`-sdb1              8:17  894.3G part LVM2_member sdb1                   6ETObl-EzTd-jLGw-zVNc-lJ5O-QxgH-5wLAqD 0x55cd2e415235b31b                                  sdb
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdb1
sdc                 8:32  894.3G disk             sdc   INTEL SSDSC2KG96                                        0x55cd2e415235b652 1:0:2:0    ATA      running sas  
`-sdc1              8:33  894.3G part LVM2_member sdc1                   pBuktx-XlCg-6Mxs-lddC-qogB-ahXa-Nd9y2p 0x55cd2e415235b652                                  sdc
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdc1
sdd                 8:48  894.3G disk             sdd   INTEL SSDSC2KG96                                        0x55cd2e41521679b7 1:0:3:0    ATA      running sas  
`-sdd1              8:49  894.3G part LVM2_member sdd1                   exVSwU-Pe07-XJ6r-Sfxe-CQcK-tu28-Hxdnqo 0x55cd2e41521679b7                                  sdd
  `-nova-instance 253:0     3.1T lvm  ext4        dm-0                   d15e2de6-2b97-4241-9451-639f7b14594e                                          running      sdd1
sr0                11:0     989M rom  iso9660     sr0   Virtual CDROM0   2022-06-17-18-18-33-00                                    0:0:0:0    AMI      running usb  

Now run the assisted installer and try to install an SNO node on this machine, you will find that the installation will fail with a message that indicates that it could not exclusively access /dev/sda

Actual results:

 The installation will fail with a message that indicates that it could not exclusively access /dev/sda

Expected results:

The installation should proceed and the cluster should start to install.

Suspected Cases
https://issues.redhat.com/browse/AITRIAGE-3809
https://issues.redhat.com/browse/AITRIAGE-3802
https://issues.redhat.com/browse/AITRIAGE-3810

Epic Goal

  • Increase success-rate of of our CI jobs
  • Improve debugability / visibility or tests 

Why is this important?

  • Failed presubmit jobs (required or optional) can make an already tested+approved PR to not get in
  • Failed periodic jobs interfere our visibility around stability of features

Description of problem:

check_pkt_length cannot be offloaded without
1) sFlow offload patches in Openvswitch
2) Hardware driver support.

Since 1) will not be done anytime soon. We need a work around for the check_pkt_length issue.

Version-Release number of selected component (if applicable):

4.11/4.12

How reproducible:

Always

Steps to Reproduce:

1. Any flow that has check_pkt_len()
  5-b: Pod -> NodePort Service traffic (Pod Backend - Different Node)
  6-b: Pod -> NodePort Service traffic (Host Backend - Different Node)
  4-b: Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  10-b: Host Pod -> Cluster IP Service traffic (Host Backend - Different Node)
  11-b: Host Pod -> NodePort Service traffic (Pod Backend - Different Node)
  12-b: Host Pod -> NodePort Service traffic (Host Backend - Different Node)   

Actual results:

Poor performance due to upcalls when check_pkt_len() is not supported.

Expected results:

Good performance.

Additional info:

https://docs.google.com/spreadsheets/d/1LHY-Af-2kQHVwtW4aVdHnmwZLTiatiyf-ySffC8O5NM/edit#gid=670206692

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • Run OpenShift builds that do not execute as the "root" user on the host node.

Why is this important?

  • OpenShift builds require an elevated set of capabilities to build a container image
  • Builds currently run as root to maintain adequate performance
  • Container workloads should run as non-root from the host's perspective. Containers running as root are a known security risk.
  • Builds currently run as root and require a privileged container. See BUILD-225 for removing the privileged container requirement.

Scenarios

  1. Run BuildConfigs in a multi-tenant environment
  2. Run BuildConfigs in a heightened security environment/deployment

Acceptance Criteria

  • Developers can opt into running builds in a cri-o user namespace by providing an environment variable with a specific value.
  • When the correct environment variable is provided, builds run in a cri-o user namespace, and the build pod does not require the "privileged: true" security context.
  • User namespace builds can pass basic test scenarios for the Docker and Source strategy build.
  • Steps to run unprivileged builds are documented.

Dependencies (internal and external)

  1. Buildah supports running inside a non-privileged container
  2. CRI-O allows workloads to opt into running containers in user namespaces.

Previous Work (Optional):

  1. BUILD-225 - remove privileged requirement for builds.

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

User Story

As a developer building container images on OpenShift
I want to specify that my build should run without elevated privileges
So that builds do not run as root from the host's perspective with elevated privileges

Acceptance Criteria

  • Developers can provide an environment variable to indicate the build should not use privileged containers
  • When the correct env var + value is specified, builds run in a user namespace (non-root on the host)

QE Impact

No QE required for Dev Preview. OpenShift regression testing will verify that existing behavior is not impacted.

Docs Impact

We will need to document how to enable this feature, with sufficient warnings regarding Dev Preview.

PX Impact

This likely warrants an OpenShift blog post, potentially?

Notes

Problem:

Customers don't want their users to have access to some/all of the items which are available in the Developer Catalog.  The request is to change access for the cluster, not per user or persona.

Goal:

Provide a form driven experience to allow cluster admins easily disable the Developer Catalog, or one or more of the sub catalogs in the Developer Catalog.

Why is it important?

Multiple customer requests.

Acceptance criteria:

  1. As a cluster admin, I can hide/disable access to the developer catalog for all users across all namespaces.
  2. As a cluster admin, I can hide/disable access to a specific sub-catalog in the developer catalog for all users across all namespaces.
    1. Builder Images
    2. Templates
    3. Helm Charts
    4. Devfiles
    5. Operator Backed

Notes

We need to consider how this will work with subcatalogs which are installed by operators: VMs, Event Sources, Event Catalogs, Managed Services, Cloud based services

Dependencies (External/Internal):

Design Artifacts:

Exploration:

Note:

Description

As a cluster-admin, I should be able to see a code snippet that shows how to enable sub-catalogs or the entire dev catalog.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, the cluster admin can add sub-catalog(s)  from the Developer Catalog or the Dev catalog as a whole.

To support the cluster-admin to configure the sub-catalog list correctly, the developer console should provide a code snippet for the customization yaml resource (Console CRD).

Acceptance Criteria

  1. When the admin opens the Console CRD there is a snippet in the sidebar which provides a default YAML, which supports the admin to add sub-catalogs/the whole dev catalog

Additional Details:

Previous work:

  1. https://issues.redhat.com/browse/ODC-5080
  2. https://issues.redhat.com/browse/ODC-5449

Description

As an admin, I want to hide/disable access to specific sub-catalogs in the developer catalog or the complete dev catalog for all users across all namespaces.

Based on the https://issues.redhat.com/browse/ODC-6732 enhancement proposal, it is required to extend the console configuration CRD to enable the cluster admins to configure this data in the console resource

Acceptance Criteria

Extend the "customization" spec type definition for the CRD in the openshift/api project

Additional Details:

Previous customization work:

  1. https://issues.redhat.com/browse/ODC-5416
  2. https://issues.redhat.com/browse/ODC-5020
  3. https://issues.redhat.com/browse/ODC-5447

Description

As an admin, I want to hide sub-catalogs in the developer catalog or hide the developer catalog completely based on the customization.

Acceptance Criteria

  1. Hide all links to the sub-catalog(s) from the add page, topology actions, empty states, quick search, and the catalog itself
  2. The sub-catalog should show Not found if the user opens the sub-catalog directly
  3. The feature should not be hidden if a sub-catalog option is disabled

Additional Details:

OCP/Telco Definition of Done
Epic Template descriptions and documentation.

<--- Cut-n-Paste the entire contents of this description into your new Epic --->

Epic Goal

  • ...

Why is this important?

Scenarios

  1. ...

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • ...

Dependencies (internal and external)

  1. ...

Previous Work (Optional):

Open questions::

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

We have been running into a number of problems with configure-ovs and nodeip-configuration selecting different interfaces in OVNK deployments. This causes connectivity issues, so we need some way to ensure that everything uses the same interface/IP.

Currently configure-ovs runs before nodeip-configuration, but since nodeip-configuration is the source of truth for IP selection regardless of CNI plugin, I think we need to look at swapping that order. That way configure-ovs could look at what nodeip-configuration chose and not have to implement its own interface selection logic.

I'm targeting this at 4.12 because even though there's probably still time to get it in for 4.11, changing the order of boot services is always a little risky and I'd prefer to do it earlier in the cycle so we have time to tease out any issues that arise. We may need to consider backporting the change though since this has been an issue at least back to 4.10.

Epic Goal

  • Facilitate the transition to for OLM and content to PSA enforcing the `restricted` security profile
  • Use the label synch'er to enforce the required security profile
  • Current content should work out-of-the-box as is
  • Upgrades should not be blocked

Why is this important?

  • PSA helps secure the cluster by enforcing certain security restrictions that the pod must meet to be scheduled
  • 4.12 will enforce the `restricted` profile, which will affect the deployment of operators in `openshift-*` namespaces 

Scenarios

  1. Admin installs operator in an `openshift-*`namespace that is not managed by the label syncher -> label should be applied
  2. Admin installs operator in an `openshift-*` namespace that has a label asking the label syncher to not reconcile it -> nothing changes

Acceptance Criteria

  • CI - MUST be running successfully with tests automated
  • Release Technical Enablement - Provide necessary release enablement details and documents.
  • Done only downstream
  • Transition documentation written and reviewed

Dependencies (internal and external)

  1. label syncher (still searching for the link)

Open questions::

  1. Is this only for openshift-* namespaces?

Resources

Stakeholders

  • Daniel S...?

Done Checklist

  • CI - CI is running, tests are automated and merged.
  • Release Enablement <link to Feature Enablement Presentation>
  • DEV - Upstream code and tests merged: <link to meaningful PR or GitHub Issue>
  • DEV - Upstream documentation merged: <link to meaningful PR or GitHub Issue>
  • DEV - Downstream build attached to advisory: <link to errata>
  • QE - Test plans in Polarion: <link or reference to Polarion>
  • QE - Automated tests merged: <link or reference to automated tests>
  • DOC - Downstream documentation merged: <link to meaningful PR>

As an admin, I would like openshift-* namespaces with an operator to be labeled with security.openshift.io/scc.podSecurityLabelSync=true to ensure the continual functioning of operators without manual intervention. The label should only be applied to openshift-* namespaces with an operator (the presence of a ClusterServiceVersion resource) IF the label is not already present. This automation will help smooth functioning of the cluster and avoid frivolous operational events.

Context: As part of the PSA migration period, Openshift will ship with the "label sync'er" - a controller that will automatically adjust PSA security profiles in response to the workloads present in the namespace. We can assume that not all operators (produced by Red Hat, the community or ISVs) will have successfully migrated their deployments in response to upstream PSA changes. The label sync'er will sync, by default, any namespace not prefixed with "openshift-", of which an explicit label (security.openshift.io/scc.podSecurityLabelSync=true) is required for sync.

A/C:
 - OLM operator has been modified (downstream only) to label any unlabelled "openshift-" namespace in which a CSV has been created
 - If a labeled namespace containing at least one non-copied csv becomes unlabelled, it should be relabelled 
 - The implementation should be done in a way to eliminate or minimize subsequent downstream sync work (it is ok to make slight architectural changes to the OLM operator in the upstream to enable this)

Goal
Provide an indication that advanced features are used

Problem

Today, customers and RH don't have the information on the actual usage of advanced features.

Why is this important?

  1. Better focus upsell efforts
  2. Compliance information for customers that are not aware they are not using the right subscription

 

Prioritized Scenarios

In Scope
1. Add a boolean variable in our telemetry to mark if the customer is using advanced features (PV encryption, encryption with KMS, external mode). 

Not in Scope

Integrate with subscription watch - will be done by the subscription watch team with our help.

Customers

All

Customer Facing Story
As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions

What does success look like?

A clear indication in subscription watch for ODF usage (either essential or advanced). 

1. Proposed title of this feature request

  • Request to add a bool variable into telemetry which indicates the usage of any of the advanced feature, like PV encryption or KMS encryption or external mode etc.

2. What is the nature and description of the request?

  • Today, customers and RH don't have the information on the actual usage of advanced features. This feature will help RH to have a better indication on the statistics of customers using the advanced features and focus better on upsell efforts.

3. Why does the customer need this? (List the business requirements here)

  • As a compliance manager, I should be able to easily see if all my clusters are using the right amount of subscriptions.

4. List any affected packages or components.

  • Telemetry

_____________________

Link to main epic: https://issues.redhat.com/browse/RHSTOR-3173

 

This epic tracks network tooling improvements for 4.12

New framework and process should be developed to make sharing network tools with devs, support and customers convenient. We are going to add some tools for ovn troubleshooting before ovn-k goes default, also some tools that we got from customer cases, and some more to help analyze and debug collected logs based on stable must-gather/sosreport format we get now thanks to 4.11 Epic.

Our estimation for this Epic is 1 engineer * 2 Sprints

WHY:
This epic is important to help improve the time it takes our customers and our team to understand an issue within the cluster.
A focus of this epic is to develop tools to quickly allow debugging of a problematic cluster. This is crucial for the engineering team to help us scale. We want to provide a tool to our customers to help lower the cognitive burden to get at a root cause of an issue.

 

Alert if any of the ovn controllers disconnected for a period of time from the southbound database using metric ovn_controller_southbound_database_connected.

The metric updates every 2 minutes so please be mindful of this when creating the alert.

If the controller is disconnected for 10 minutes, fire an alert.

DoD: Merged to CNO and tested by QE

This Epic is here to track the rebase we need to do when kube 1.25 is GA https://www.kubernetes.dev/resources/release/

Keeping this in mind can help us plan our time better. ATTOW GA is planned for August 23

https://docs.google.com/document/d/1h1XsEt1Iug-W9JRheQas7YRsUJ_NQ8ghEMVmOZ4X-0s/edit --> this is the link for rebase help

Other Complete

This section includes Jira cards that are not linked to either an Epic or a Feature. These tickets were completed when this image was assembled

job=pull-ci-openshift-origin-master-e2e-gcp-builds=all

This test has started permafailing on e2e-gcp-builds:

[sig-builds][Feature:Builds][Slow] s2i build with environment file in sources Building from a template should create a image from "test-env-build.json" template and run it in a pod [apigroup:build.openshift.io][apigroup:image.openshift.io]

The error in the test says

Sep 13 07:03:30.345: INFO: At 2022-09-13 07:00:21 +0000 UTC - event for build-test-pod: {kubelet ci-op-kg1t2x13-4e3c6-7hrm8-worker-a-66nwd} Pulling: Pulling image "image-registry.openshift-image-registry.svc:5000/e2e-test-build-sti-env-nglnt/test@sha256:262820fd1a94d68442874346f4c4024fdf556631da51cbf37ce69de094f56fe8"
Sep 13 07:03:30.345: INFO: At 2022-09-13 07:00:23 +0000 UTC - event for build-test-pod: {kubelet ci-op-kg1t2x13-4e3c6-7hrm8-worker-a-66nwd} Pulled: Successfully pulled image "image-registry.openshift-image-registry.svc:5000/e2e-test-build-sti-env-nglnt/test@sha256:262820fd1a94d68442874346f4c4024fdf556631da51cbf37ce69de094f56fe8" in 1.763914719s
Sep 13 07:03:30.345: INFO: At 2022-09-13 07:00:23 +0000 UTC - event for build-test-pod: {kubelet ci-op-kg1t2x13-4e3c6-7hrm8-worker-a-66nwd} Created: Created container test
Sep 13 07:03:30.345: INFO: At 2022-09-13 07:00:23 +0000 UTC - event for build-test-pod: {kubelet ci-op-kg1t2x13-4e3c6-7hrm8-worker-a-66nwd} Started: Started container test
Sep 13 07:03:30.345: INFO: At 2022-09-13 07:00:24 +0000 UTC - event for build-test-pod: {kubelet ci-op-kg1t2x13-4e3c6-7hrm8-worker-a-66nwd} Pulled: Container image "image-registry.openshift-image-registry.svc:5000/e2e-test-build-sti-env-nglnt/test@sha256:262820fd1a94d68442874346f4c4024fdf556631da51cbf37ce69de094f56fe8" already present on machine
Sep 13 07:03:30.345: INFO: At 2022-09-13 07:00:25 +0000 UTC - event for build-test-pod: {kubelet ci-op-kg1t2x13-4e3c6-7hrm8-worker-a-66nwd} Unhealthy: Readiness probe failed: Get "http://10.129.2.63:8080/": dial tcp 10.129.2.63:8080: connect: connection refused
Sep 13 07:03:30.345: INFO: At 2022-09-13 07:00:26 +0000 UTC - event for build-test-pod: {kubelet ci-op-kg1t2x13-4e3c6-7hrm8-worker-a-66nwd} BackOff: Back-off restarting failed container

Description of problem:

Event souces are not shown in topology

Version-Release number of selected component (if applicable):

Have verified it on 4.12.0-0.nightly-2022-09-20-095559

How reproducible:

 

Steps to Reproduce:

1. Install Serverless operator
2. Create CR for knative-serving and knative-eventing respectively
3. Create/select a ns -> go to dev console -> add -> event souce
4. Create any event source

 

 

Actual results:

Can't see created resouoce(Event source) in topology

Expected results:

Should be able to see created resoouce on topology

Additional info:

 

An RW mutex was introduced to the project auth cache with https://github.com/openshift/openshift-apiserver/pull/267, taking exclusive access during cache syncs. On clusters with extremely high object counts for namespaces and RBAC, syncs appear to be extremely slow (on the order of several minutes). The project LIST handler acquires the same mutex in shared mode as part of its critical path.

Our Prometheus alerts are inconsistent with both upstream and sometimes our own vendor folder. Let's do a clean update run before the next release is branched off.

This is a clone of issue OCPBUGS-1704. The following is the description of the original issue:

Description of problem:

According to OCP 4.11 doc (https://docs.openshift.com/container-platform/4.11/installing/installing_gcp/installing-gcp-account.html#installation-gcp-enabling-api-services_installing-gcp-account), the Service Usage API (serviceusage.googleapis.com) is an optional API service to be enabled. But, the installation cannot succeed if this API is disabled.

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-25-071630

How reproducible:

Always, if the Service Usage API is disabled in the GCP project.

Steps to Reproduce:

1. Make sure the Service Usage API (serviceusage.googleapis.com) is disabled in the GCP project.
2. Try IPI installation in the GCP project. 

Actual results:

The installation would fail finally, without any worker machines launched.

Expected results:

Installation should succeed, or the OCP doc should be updated.

Additional info:

Please see the attached must-gather logs (http://virt-openshift-05.lab.eng.nay.redhat.com/jiwei/jiwei-0926-03-cnxn5/) and the sanity check results. 
FYI if enabling the API, and without changing anything else, the installation could succeed. 

Similar to how we generate the kubeconfig at the same time as the ISO, we should also generate the admin password.

This will require changes to the installer to allow assisted-service to pass at least the hash of the password in to the installer process that generates the bootstrap ignition, similar in concept to the changes made to pass the kubeconfig.

Description of problem:

egressip healthcheck through GRPC on dualstack cluster only uses v6 address when it trying to re-connect to egressIP node

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-04-081353

How reproducible:

 

Steps to Reproduce:

1. on dualstack OVN cluster, label one node to be egressip assignable
2. check leader ovnkube-master pod's log for egressip health check messages
3. set iptable to drop tcp port 9107 on the egress node, check leader ovnkube-master pod's log again

$  oc -n openshift-ovn-kubernetes logs ovnkube-master-s8gl4  -c ovnkube-master | grep health
I1004 17:10:13.752545       1 egressip_healthcheck.go:168] Connected to master-01.jechen-1004d.qe.devcluster.openshift.com (10.129.0.2:9107)
I1004 17:10:13.754308       1 egressip_healthcheck.go:168] Connected to master-00.jechen-1004d.qe.devcluster.openshift.com (10.128.0.2:9107)
I1004 17:10:13.757856       1 egressip_healthcheck.go:168] Connected to worker-00.jechen-1004d.qe.devcluster.openshift.com (10.129.2.2:9107)
I1004 17:10:13.760742       1 egressip_healthcheck.go:168] Connected to worker-02.jechen-1004d.qe.devcluster.openshift.com (10.131.0.2:9107)
I1004 17:10:13.763491       1 egressip_healthcheck.go:168] Connected to master-02.jechen-1004d.qe.devcluster.openshift.com (10.130.0.2:9107)
I1004 17:10:13.766653       1 egressip_healthcheck.go:168] Connected to worker-01.jechen-1004d.qe.devcluster.openshift.com (10.128.2.2:9107)
I1004 17:10:18.749573       1 egressip_healthcheck.go:177] Closing connection with worker-00.jechen-1004d.qe.devcluster.openshift.com (10.129.2.2:9107)
I1004 17:10:18.749624       1 egressip_healthcheck.go:177] Closing connection with worker-01.jechen-1004d.qe.devcluster.openshift.com (10.128.2.2:9107)
I1004 17:10:18.749635       1 egressip_healthcheck.go:177] Closing connection with master-01.jechen-1004d.qe.devcluster.openshift.com (10.129.0.2:9107)
I1004 17:10:18.749645       1 egressip_healthcheck.go:177] Closing connection with master-00.jechen-1004d.qe.devcluster.openshift.com (10.128.0.2:9107)
I1004 17:10:18.749654       1 egressip_healthcheck.go:177] Closing connection with worker-02.jechen-1004d.qe.devcluster.openshift.com (10.131.0.2:9107)
I1004 17:10:18.749663       1 egressip_healthcheck.go:177] Closing connection with master-02.jechen-1004d.qe.devcluster.openshift.com (10.130.0.2:9107)
I1004 18:21:13.753154       1 egressip_healthcheck.go:168] Connected to worker-00.jechen-1004d.qe.devcluster.openshift.com (10.129.2.2:9107)
I1004 18:21:19.749592       1 egressip_healthcheck.go:177] Closing connection with worker-00.jechen-1004d.qe.devcluster.openshift.com (10.129.2.2:9107)
W1004 18:21:24.750727       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:21:29.750396       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:21:34.749900       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:21:39.750830       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:21:44.750599       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:21:49.750640       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:21:54.749998       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:21:59.750512       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:22:04.749911       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:22:09.750500       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:22:14.750400       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:22:19.750448       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:22:24.749497       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:22:29.750366       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
I1004 18:24:03.020413       1 egressip_healthcheck.go:168] Connected to worker-00.jechen-1004d.qe.devcluster.openshift.com (10.129.2.2:9107)
I1004 18:24:09.750273       1 egressip_healthcheck.go:177] Closing connection with worker-00.jechen-1004d.qe.devcluster.openshift.com (10.129.2.2:9107)
W1004 18:24:14.749580       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:24:19.750138       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:24:24.750291       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:24:29.750526       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:24:34.750725       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:24:39.750496       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:24:44.750182       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:24:49.750172       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:24:54.749791       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:24:59.749548       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:25:04.750806       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:25:09.750666       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:25:14.750602       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:25:19.750717       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
I1004 18:28:58.561054       1 egressip_healthcheck.go:168] Connected to worker-00.jechen-1004d.qe.devcluster.openshift.com (10.129.2.2:9107)
I1004 18:29:04.749940       1 egressip_healthcheck.go:177] Closing connection with worker-00.jechen-1004d.qe.devcluster.openshift.com (10.129.2.2:9107)
W1004 18:29:09.749710       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
W1004 18:29:14.749689       1 egressip_healthcheck.go:164] Could not connect to worker-00.jechen-1004d.qe.devcluster.openshift.com ([fd01:0:0:6::2]:9107): context deadline exceeded
 

Actual results:

uses v6 mgmtIP address to try to reconnect

Expected results:

Should use both v4 and v6 address to try to reconnect

Additional info:

 

 

We rely on the user providing accurate information about the MAC addresses in the agent-config, because at the point we read it we haven't seen the hosts yet. However, if the user gets this wrong then chaos may ensue.

Once inventory is available, we should validate that the user has not:

  • Specified MAC addresses that belong to two different agents in the same host config; nor
  • Specified MAC addresses that belong to the same agent in two different host configs

and fail the install if they have.

Description of problem:

 

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

When spot instances with taints are added to the cluster on AWS, machine-api-termination-handler daemonset pods do not launch on these instances because of the taints. 

machine-api-termination-handler is used for checking the notification of  intance termination, so if it doesn't launch properly, application pods on spot instances could stop without normal shut down procedures. 

It is common to use taint-toleration to specify workloads on spot instances, because it does not require changing application manifests of other workloads. 

Version-Release number of selected component (if applicable):

 

How reproducible:

100%

Steps to Reproduce:

1. Creating ROSA cluster
2. Adding spot instances with taints on OCM
3. oc get daemonset machine-api-termination-handler -n openshift-machine-api

Actual results:

machine-api-termination-handler pods do not launch on spot instances

Expected results:

machine-api-termination-handler pods launch on spot instances

Additional info:

Adding followings to machine-api-termination-handler daemonset could resolve the problem.
---  
tolerations:        
- operator: Exists

Tracker bug for bootimage bump in 4.12. This bug should block bugs which need a bootimage bump to fix.

Description of problem:

The current version of openshift/cluster-ingress-operator vendors Kubernetes 1.24 packages.  OpenShift 4.12 is based on Kubernetes 1.25.  

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. Check https://github.com/openshift/cluster-ingress-operator/blob/release-4.12/go.mod 

Actual results:

Kubernetes packages (k8s.io/api, k8s.io/apimachinery, and k8s.io/client-go) are at version v0.24.0.

Expected results:

Kubernetes packages are at version v0.25.0 or later.

Additional info:

Using old Kubernetes API and client packages brings risk of API compatibility issues.

This is a clone of issue OCPBUGS-3096. The following is the description of the original issue:

While the installer binary is statically linked, the terraform binaries shipped with it are dynamically linked.

This could give issues when running the installer on Linux and depending on the GLIBC version the specific Linux distribution has installed. It becomes a risk when switching the base image of the builders from ubi8 to ubi9 and trying to run the installer in cs8 or rhel8.

For example, building the installer on cs9 and trying to run it in a cs8 distribution leads to:

time="2022-10-31T14:31:47+01:00" level=debug msg="[INFO] running Terraform command: /root/test/terraform/bin/terraform version -json"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.34' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=debug msg="[INFO] running Terraform command: /root/test/terraform/bin/terraform version -json"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.34' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=debug msg="[INFO] running Terraform command: /root/test/terraform/bin/terraform init -no-color -force-copy -input=false -backend=true -get=true -upgrade=false -plugin-dir=/root/test/terraform/plugins"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=error msg="/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.34' not found (required by /root/test/terraform/bin/terraform)"
time="2022-10-31T14:31:47+01:00" level=error msg="failed to fetch Cluster: failed to generate asset \"Cluster\": failure applying terraform for \"cluster\" stage: failed to create cluster: failed doing terraform init: exit status 1\n/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.32' not found (required by /root/test/terraform/bin/terraform)\n/root/test/terraform/bin/terraform: /lib64/libc.so.6: version `GLIBC_2.34' not found (required by /root/test/terraform/bin/terraform)\n"

How reproducible:Always

Steps to Reproduce:{code:none}
1. Build the installer on cs9
2. Run the installer on cs8 until the terraform binary are started
3. Looking at the terrform binary with ldd or file, you can get it is not a statically linked binary and the error above might occur depending on the glibc version you are running on 

Actual results:

 

Expected results:

The terraform and providers binaries have to be statically linked as well as the installer is.

Additional info:

This comes from a build of OKD/SCOS that is happening outside of Prow on a cs9-based builder image.

One can use the Dockerfile at images/installer/Dockerfile.ci and replace the builder image with one like https://github.com/okd-project/images/blob/main/okd-builder.Dockerfile

As OpenShift user, I want ClusterCSIDriver.Spec.LogLevel to affect the vSphere CSI driver logs, so I can capture the logs with all details and send it to Red Hat for investigation.

As OpenShift developer, I want ClusterCSIDriver.Spec.LogLevel to affect the vShere CSI CSI driver logs, so I can debug the driver with all logs.

Exit criteria:

  • When ClusterCSIDriver.Spec.LogLevel is set to Debug or higher, vSphere CSI driver logs include DEBUG messages like:

2022-08-05T11:54:10.808Z DEBUG commonco/utils.go:102 Container Orchestrator init params:

Unknown macro: {InternalFeatureStatesConfigInfo}

ServiceMode:controller}

Description of problem:
project viewer is able to see a 'Create Pod Disruption Budget' button on Pods list page while the creation will fail finally due to less permission, in this way console should not show a 'Create Pod Disruption Budget' button for project viewer, other resources list page doesn’t have the issue

Version-Release number of selected component (if applicable):
4.10.0-0.nightly-2021-09-16-212009

How reproducible:
Always

Steps to Reproduce:
1. normal user has a project and workloads

  1. oc get all -n yapei1-project
    NAME READY STATUS RESTARTS AGE
    pod/example-787f749bb-czkms 1/1 Running 0 79s
    pod/example-787f749bb-m7wxt 1/1 Running 0 79s
    pod/example-787f749bb-mw8jv 1/1 Running 0 79s

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/example 3/3 3 3 79s

NAME DESIRED CURRENT READY AGE
replicaset.apps/example-787f749bb 3 3 3 79s

2. grant another user with view access to user project 'yapei1-project'

  1. oc adm policy add-role-to-user view uiauto1 -n yapei1-project
    clusterrole.rbac.authorization.k8s.io/view added: "uiauto1"
    3. login with user 'uiauto1' and check the permissions on Pods list page

Actual results:
3. project viewer 'uiauto1' can see pods list successfully, at the same time console also shows a 'Create Pod Disruption Budget' button while the creation will finally fail if project viewer tries to create a pod

Expected results:
3. console should not show 'Create Pod Disruption Budget' button for a project viewer

Additional info:
For comparison: we doesn't show resource creation button('Create xxx' button) on other workloads list page for a project viewer, such as Deployments, DeploymentConfigs list etc

Description of problem:

When providing install-config as

platform:
 baremetal:
  apiVIP: 192.168.122.10
  ingressVIP: 192.168.122.11

agent installer fails with 
bin/openshift-install agent create cluster-manifests
FATAL failed to fetch Agent Manifests: failed to load asset "Install Config": invalid install-config configuration: [Platform.Baremetal.ApiVips: Required value: apiVips must be set for baremetal platform, Platform.Baremetal.IngressVips: Required value: ingressVips must be set for baremetal platform]
 

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Git clone latest installer https://github.com/openshift/installer and build it
2. Provide install-config.yaml for baremetal platform with deprecated apiVip and ingressVip set
3. Create agent image with "bin/openshift-install agent create cluster-manifests"

Actual results:

bin/openshift-install agent create cluster-manifests
FATAL failed to fetch Agent Manifests: failed to load asset "Install Config": invalid install-config configuration: [Platform.Baremetal.ApiVips: Required value: apiVips must be set for baremetal platform, Platform.Baremetal.IngressVips: Required value: ingressVips must be set for baremetal platform]

Expected results:

agent installer should upconvert the depreacted fields and should not error. apiVip, ingressVip should be upconverted into apiVips and ingressVips respectively

Additional info:

 

ovnkube-trace: ofproto/trace fails for IPv6

[akaris@linux go-controller (fix-ovnkube-trace-ipv6)]$ oc exec -ti ovn-trace-two -n ovn-tests-two -- ovnkube-trace -src-namespace ovn-tests-two -src ovn-trace-two -dst-ip 2404:6800:4003:c06::69 -tcp
I1021 12:16:56.478752    3356 ovs.go:90] Maximum command line arguments set to: 191102
ovn-trace from pod to IP indicates success from ovn-trace-two to 2404:6800:4003:c06::69
F1021 12:16:57.075803    3356 ovnkube-trace.go:601] ovs-appctl ofproto/trace pod to IP error command terminated with exit code 2 stdOut: 
 stdErr: Bad openflow flow syntax: in_port=73af56a18042ab9, tcp, dl_src=0a:58:17:2b:b6:42, dl_dst=0a:58:69:bd:ba:d8, nw_src=fd01:0:0:5::13, nw_dst=2404:6800:4003:c06::69, nw_ttl=64, tcp_dst=80, tcp_src=12345: bad value for nw_src (fd01:0:0:5::13: invalid IP address)
ovs-appctl: ovs-vswitchd: server returned an error
command terminated with exit code 1
[akaris@linux go-controller (fix-ovnkube-trace-ipv6)]$ oc exec -ti ovn-trace-two -n ovn-tests-two -- ovnkube-trace -src-namespace ovn-tests-two -src ovn-trace-two -dst-namespace ovn-tests -dst ovn-trace -udp
I1021 12:17:26.695325    3386 ovs.go:90] Maximum command line arguments set to: 191102
ovn-trace source pod to destination pod indicates success from ovn-trace-two to ovn-trace
ovn-trace destination pod to source pod indicates success from ovn-trace to ovn-trace-two
F1021 12:17:27.708822    3386 ovnkube-trace.go:601] ovs-appctl ofproto/trace source pod to destination pod error command terminated with exit code 2 stdOut: 
 stdErr: Bad openflow flow syntax: in_port=73af56a18042ab9, udp, dl_src=0a:58:17:2b:b6:42, dl_dst=0a:58:69:bd:ba:d8, nw_src=fd01:0:0:5::13, nw_dst=fd01:0:0:5::14, nw_ttl=64, udp_dst=80, udp_src=12345: bad value for nw_src (fd01:0:0:5::13: invalid IP address)
ovs-appctl: ovs-vswitchd: server returned an error
command terminated with exit code 1

This is a clone of issue OCPBUGS-2290. The following is the description of the original issue:

Description of problem:

If you try to deploy with Internal publishing strategy, and you have either already have a pubilc gateway or already permitted the VPC subnet to the DNS service, deploy will always fail.

Version-Release number of selected component (if applicable):

 

How reproducible:

Easily

Steps to Reproduce:

1. Add a public gateway to VPC network and/or add VPC subnet to permitted DNS networks
2. Set publish strategy to Internal
3. Deploy

Actual results:

Deploy fails

Expected results:

If the resources exist simply skip trying to create them.

Additional info:

Fix here https://github.com/openshift/installer/pull/6481

For the disconnected installation , we should not be able to provision machines successfully with publicIP:true , this has been the behavior earlier till -
4.11 and around 17th Aug nightly released 4.12 , but it has started allowing creation of machines with publicIP:true set in machineset

Issue reproduced on - Cluster version - 4.12.0-0.nightly-2022-08-23-223922

It is always reproducible .

Steps :
Create machineset using yaml with 
{"spec":{"providerSpec":{"value":{"publicIP": true}}}}

Machineset created successfully and machine provisioned successfully .

This seems to be regression bug refer - https://bugzilla.redhat.com/show_bug.cgi?id=1889620

Here is the must gather log - https://drive.google.com/file/d/1UXjiqAx7obISTxkmBsSBuo44ciz9HD1F/view?usp=sharing

Here is the test successfully ran for 4.11 , for exactly same profile and machine creation failed with InvalidConfiguration Error- https://mastern-jenkins-csb-openshift-qe.apps.ocp-c1.prod.psi.redhat.com/job/ocp-common/job/Runner/575822/console

We can confirm disconnected cluster using below  there would be lot of mirrors used in those - 

oc get ImageContentSourcePolicy image-policy-aosqe -o yaml 

apiVersion: operator.openshift.io/v1alpha1
kind: ImageContentSourcePolicy
metadata:
  creationTimestamp: "2022-08-24T09:08:47Z"
  generation: 1
  name: image-policy-aosqe
  resourceVersion: "34648"
  uid: 20e45d6d-e081-435d-b6bb-16c4ca21c9d6
spec:
  repositoryDigestMirrors:
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/olmqe
    source: quay.io/olmqe
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshifttest
    source: quay.io/openshifttest
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6001/openshift-qe-optional-operators
    source: quay.io/openshift-qe-optional-operators
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: registry.stage.redhat.io
  - mirrors:
    - miyadav-2408a.mirror-registry.qe.azure.devcluster.openshift.com:6002
    source: brew.registry.redhat.io

 

 

When multi-cluster is enabled, it possible to get in a situation where you can't cancel login. If you select a cluster you don't know the credentials for, console will remember the last cluster and repeatedly send you to the login page with no way to cancel or go back. If we decide to set the last cluster in the user's preferences, it might be possible to get stuck even if you clear cookies and localStorage.

There are similar issues logging into cluster that are hibernating. See attached video.

cc Scott Berens

Description of problem:

cloud-network-config-controller pod crashloops in proxy deployments as it tries to reach Openstack keystone API directly (not through the proxy) and there is no connectivity.

NAMESPACE                                          NAME                                                         READY   STATUS             RESTARTS          AGE
openshift-cloud-network-config-controller          cloud-network-config-controller-c4867b748-vlq9h              0/1     CrashLoopBackOff   158 (2m10s ago)   13h

$ oc -n openshift-cloud-network-config-controller logs -p cloud-network-config-controller-c4867b748-vlq9h
W0927 05:48:18.678947       1 client_config.go:617] Neither --kubeconfig nor --master was specified.  Using the inClusterConfig.  This might not work.
I0927 05:48:18.680269       1 leaderelection.go:248] attempting to acquire leader lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock...
I0927 05:48:26.754377       1 leaderelection.go:258] successfully acquired lease openshift-cloud-network-config-controller/cloud-network-config-controller-lock
I0927 05:48:26.755413       1 openstack.go:121] Custom CA bundle found at location '/kube-cloud-config/ca-bundle.pem' - reading certificate information
F0927 05:48:28.233519       1 main.go:101] Error building cloud provider client, err: Get "https://10.46.44.10:13000/": dial tcp 10.46.44.10:13000: connect: no route to host
goroutine 51 [running]:
k8s.io/klog/v2.stacks(0x1)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:860 +0x8a
k8s.io/klog/v2.(*loggingT).output(0x37696c0, 0x3, 0x0, 0xc000636000, 0x1, {0x2cbcbd8?, 0x1?}, 0xc000438400?, 0x0)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:825 +0x686
k8s.io/klog/v2.(*loggingT).printfDepth(0x37696c0, 0x237798a?, 0x0, {0x0, 0x0}, 0x7fff81041af7?, {0x23a20d0, 0x2d}, {0xc00052c050, 0x1, ...})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:630 +0x1f2
k8s.io/klog/v2.(*loggingT).printf(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:612
k8s.io/klog/v2.Fatalf(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/klog/v2/klog.go:1516
main.main.func1({0x26e5638, 0xc00016c040})
        /go/src/github.com/openshift/cloud-network-config-controller/cmd/cloud-network-config-controller/main.go:101 +0x26d
created by k8s.io/client-go/tools/leaderelection.(*LeaderElector).Run
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:211 +0x11bgoroutine 1 [select]:
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc00052bb60?, {0x26cee20, 0xc000581740}, 0x1, 0xc00052bb60)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:167 +0x135
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0xc00016c080?, 0x60db88400, 0x0, 0x20?, 0x7fea470ec108?)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x89
k8s.io/apimachinery/pkg/util/wait.Until(...)
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
k8s.io/client-go/tools/leaderelection.(*LeaderElector).renew(0xc0000a8120, {0x26e5638?, 0xc00016c040?})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:268 +0xd0
k8s.io/client-go/tools/leaderelection.(*LeaderElector).Run(0xc0000a8120, {0x26e5638, 0xc00025fcc0})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:212 +0x12f
k8s.io/client-go/tools/leaderelection.RunOrDie({0x26e5638, 0xc00025fcc0}, {{0x26e7430, 0xc00062afa0}, 0x1fe5d61a00, 0x18e9b26e00, 0x60db88400, {0xc00065e630, 0xc000634810, 0x0}, ...})
        /go/src/github.com/openshift/cloud-network-config-controller/vendor/k8s.io/client-go/tools/leaderelection/leaderelection.go:226 +0x94
main.main()
        /go/src/github.com/openshift/cloud-network-config-controller/cmd/cloud-network-config-controller/main.go:86 +0x450

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-26-050728

How reproducible:

Always

Steps to Reproduce:

1. Install OCP with proxy

Actual results:

Bootstrap failure and pod crashloop

Expected results:

Successful installation

Additional info:

Please find the must-gather here.

Description of problem:

Pod and PDB list page just report "Not found" when no resources found 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-15-094115

How reproducible:

Always

Steps to Reproduce:

1. normal user has a new empty project
2. normal user visit PDB list page via Workloads ->  PodDisruptionBudgets 
3.

Actual results:

2. it just reports 'Not found'

Expected results:

2. for other workloads, it will report "No <resource> found", for example
No HorizontalPodAutoscalers found
No StatefulSets found
No Deployments found

so for Pods and PodDisruptionBudgets list page, when no resource can be found, it's better that we also reports "No pods found" and "No PodDisruptionBudgets found"

Additional info:

 

 As mentioned in AITRIAGE-3520, there multiple attempts to grab controller logs might fail at some point and override existing logs.

In the case of the ticket I mentioned, we were able to retrieve controller logs from the logs server. However, this might not always be the case for other clusters.

We need to find a way to preserve all logs, or time out log collection differently.

 

The way we thought it can be handled is by writing logs inside container and in case kube-api is not reachable we will read logs from file

Omer Tuchfeld Nir Magnezi  Mat Kowalski 

Description of problem:
When the user runs:

openshift-install agent create image --dir cluster-manifests

But the manifests are either not in cluster-manifests or are missing, the error code generated by the tool leads users to believe that they are missing some tool dependency:

ERROR failed to write asset (Agent Installer ISO) to disk: image reader not available

Version-Release number of selected component (if applicable):4.11.0

How reproducible: 100%

Steps to Reproduce:
1. rm -fr /tmp/cluster-manifests && mkdir /tmp/cluster-manifests
2.openshift-install agent create image --dir cluster-manifests

Actual results:
ERROR failed to write asset (Agent Installer ISO) to disk: image reader not available

Expected results:
Error: Missing manifets in the specified cluster manifest directory: "/tmp/cluster-manifests"

Additional info:

Description of problem:

Since the decomissioning of the psi cluster, and subsequent move of the rhcos release browser, product builds machine-os-images builds have been failing. See e.g. https://brewweb.engineering.redhat.com/brew/taskinfo?taskID=47565717

Version-Release number of selected component (if applicable):

4.12, 4.11, 4.10.

How reproducible:

Have ART build the image

Steps to Reproduce:

1. Have ART build the image

Actual results:

Build failure

Expected results:

Build succesful

Additional info:


Description of problem:

failed even trying to "create install-config" in the epic's scenario

Version-Release number of selected component (if applicable):

$ ./openshift-install version
./openshift-install 4.12.0-0.nightly-2022-09-28-204419
built from commit 9eb0224926982cdd6cae53b872326292133e532d
release image registry.ci.openshift.org/ocp/release@sha256:2c8e617830f84ac1ee1bfcc3581010dec4ae5d9cad7a54271574e8d91ef5ecbc
release architecture amd64

How reproducible:

Always

Steps to Reproduce:

1. create vpc network, subnets, and a firewall-rule to allow ssh access to the bastion host
2. create the bastion host, with setting a valid service-account and scopes of "https://www.googleapis.com/auth/cloud-platform"
3. scp pull secret to the bastion host
4. ssh to the bastion host (subsequent steps would be on the bastion host, except told explicitly)
5. get "oc", e.g. curl https://mirror2.openshift.com/pub/openshift-v4/clients/ocp/4.9.9/openshift-client-linux-4.9.9.tar.gz -o openshift-client-linux-4.9.9.tar.gz; tar zxvf openshift-client-linux-4.9.9.tar.gz
6. obtain the installation program
7. try "create install-config" of platform "gcp" 

Actual results:

[cloud-user@jiwei-0930-02-rhel8-mirror ~]$ ./openshift-install create install-config --dir work                                         
? SSH Public Key /home/cloud-user/.ssh/id_rsa.pub                                                                                       
? Platform gcp                                                                                                                          
INFO Credentials loaded from gcloud CLI defaults                                                                                        
? Project ID OpenShift QE Shared VPC (openshift-qe-shared-vpc)                                                                          
? Region us-west1                                                                                                                       
? Base Domain qe-shared-vpc.qe.gcp.devcluster.openshift.com                                                                             
? Cluster Name jiwei-0930-03                                                                                                            
? Pull Secret [? for help] ******
FATAL failed to fetch Install Config: failed to generate asset "Install Config": credentialsMode: Forbidden: environmental authentication is only supported with Manual credentials mode 
[cloud-user@jiwei-0930-02-rhel8-mirror ~]$ 

Expected results:

"create install-config" should succeed.

Additional info:

 

 

 

 

 

Description of problem:

some upgrade ci jobs from 4.11.z to 4.12 nightly build are failed, because system unit machine-config-daemon-update-rpmostree-via-container is failed

e.g. job https://qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/view/gs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-aws-ipi-proxy-p1/1579169944476585984

omg get mcp
NAME    CONFIG                                            UPDATED  UPDATING  DEGRADED  MACHINECOUNT  READYMACHINECOUNT  UPDATEDMACHINECOUNT  DEGRADEDMACHINECOUNT  AGE
worker  rendered-worker-6e18de1272fad7a5ca1529941e3ceaed  False    True      True      3             0                  0                    1                     3h53m
master  rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4  False    True      True      3             0                  0                    1                     3h53m 

check issued node

omg get node/ip-10-0-57-74.us-east-2.compute.internal -o yaml|yq -y '.metadata.annotations'
cloud.network.openshift.io/egress-ipconfig: '[{"interface":"eni-0f6de21569b5b65c8","ifaddr":{"ipv4":"10.0.48.0/20"},"capacity":{"ipv4":14,"ipv6":15}}]'
csi.volume.kubernetes.io/nodeid: '{"ebs.csi.aws.com":"i-01a34f6b5f2cd1e41"}'
machine.openshift.io/machine: openshift-machine-api/ci-op-kb95kxx9-2a438-r6z94-master-2
machineconfiguration.openshift.io/controlPlaneTopology: HighlyAvailable
machineconfiguration.openshift.io/currentConfig: rendered-master-065664319cfbaee64277097d49a8a5a6
machineconfiguration.openshift.io/desiredConfig: rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4
machineconfiguration.openshift.io/desiredDrain: drain-rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4
machineconfiguration.openshift.io/lastAppliedDrain: drain-rendered-master-60f4ff5893c94f53acd9ebb7a6bf53d4
machineconfiguration.openshift.io/reason: 'error running systemd-run --unit machine-config-daemon-update-rpmostree-via-container
  --collect --wait -- podman run --authfile /var/lib/kubelet/config.json --privileged
  --pid=host --net=host --rm -v /:/run/host quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661
  rpm-ostree ex deploy-from-self /run/host: Running as unit: machine-config-daemon-update-rpmostree-via-container.service


  Finished with result: exit-code


  Main processes terminated with: code=exited/status=125


  Service runtime: 2min 52ms


  CPU time consumed: 144ms


  : exit status 125'
machineconfiguration.openshift.io/state: Degraded
volumes.kubernetes.io/controller-managed-attach-detach: 'true' 

check mcd log on issued node

omg get pod -n openshift-machine-config-operator  -o json | jq -r '.items[]|select(.spec.nodeName=="ip-10-0-57-74.us-east-2.compute.internal")|.metadata.name' | grep daemon
machine-config-daemon-znbvf

2022-10-09T22:12:58.797891917Z I1009 22:12:58.797821  179598 update.go:1917] Updating OS to layered image quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661
2022-10-09T22:12:58.797891917Z I1009 22:12:58.797846  179598 rpm-ostree.go:447] Running captured: rpm-ostree --version
2022-10-09T22:12:58.815829171Z I1009 22:12:58.815800  179598 update.go:2068] rpm-ostree is not new enough for layering; forcing an update via container
2022-10-09T22:12:58.817577513Z I1009 22:12:58.817555  179598 update.go:2053] Running: systemd-run --unit machine-config-daemon-update-rpmostree-via-container --collect --wait -- podman run --authfile /var/lib/kubelet/config.json --privileged --pid=host --net=host --rm -v /:/run/host quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661 rpm-ostree ex deploy-from-self /run/host 
...
2022-10-09T22:15:00.831959313Z E1009 22:15:00.831949  179598 writer.go:200] Marking Degraded due to: error running systemd-run --unit machine-config-daemon-update-rpmostree-via-container --collect --wait -- podman run --authfile /var/lib/kubelet/config.json --privileged --pid=host --net=host --rm -v /:/run/host quay.io/openshift-release-dev/ocp-v4.0-art-dev@sha256:0daf5c4a35424410e88dde102022fc3581302bc8a98e09e2e4748502c59b3661 rpm-ostree ex deploy-from-self /run/host: Running as unit: machine-config-daemon-update-rpmostree-via-container.service
2022-10-09T22:15:00.831959313Z Finished with result: exit-code
2022-10-09T22:15:00.831959313Z Main processes terminated with: code=exited/status=125
2022-10-09T22:15:00.831959313Z Service runtime: 2min 52ms
2022-10-09T22:15:00.831959313Z CPU time consumed: 144ms
2022-10-09T22:15:00.831959313Z : exit status 125

Version-Release number of selected component (if applicable):

4.12

Steps to Reproduce:

upgrade cluster from 4.11.8 to 4.12.0-0.nightly-2022-10-05-053337  

Actual results:

upgrade is failed due to node is degraded, rpm-ostree update via container is failed

Expected results:

upgrade can be completed successfully

Additional info:

must-gather: https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-aws-ipi-proxy-p1/1579169944476585984/artifacts/aws-ipi-proxy-p1/gather-must-gather/artifacts/must-gather.tar

Other build logs of failed jobs

https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-aws-ipi-proxy-cco-manual-security-token-service-p1/1579200140067999744/build-log.txt

https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-azure-ipi-proxy-p1/1579094436883730432/build-log.txt

https://gcsweb-qe-private-deck-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/qe-private-deck/logs/periodic-ci-openshift-openshift-tests-private-release-4.12-nightly-4.12-upgrade-from-stable-4.11-azure-ipi-proxy-workers-rhcos-rhel8-p2/1578747158293647360/build-log.txt

Description of problem:

There were 4 ingress-controllers and totally 15 routes. On web console, try to query "route_metrics_controller_routes_per_shard" in Observe >> Metrics page. the stats for 3 ingress-controllers are 15, and it is 1 for the last ingress-controller

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-23-154914

How reproducible:

Create pods, services, ingress-controllers, routes, then check  "route_metrics_controller_routes_per_shard" on web console

Steps to Reproduce:

1. get cluster's base domain
% oc get dnses.config/cluster -oyaml | grep -i domain
  baseDomain: shudi-412gcpop36.qe.gcp.devcluster.openshift.com

2. create 3 clusters
% oc -n openshift-ingress-operator get ingresscontroller
NAME         AGE
default      7h5m
extertest3   120m
internal1    120m
internal2    120m
% 

3. check the spec of the 4 ingress-controllres
a, default

b, extertest3
spec:
  domain: extertest3.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: External
    type: LoadBalancerService
c, internal1
spec:
  domain: internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: Internal
    type: LoadBalancerService
d, internal2
spec:
  domain: internal2.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
  endpointPublishingStrategy:
    loadBalancer:
      dnsManagementPolicy: Managed
      scope: Internal
    type: LoadBalancerService
  routeSelector:
    matchLabels:
      shard: alpha

4. check the route, there are 15 routes
% oc get route -A | awk '{print $3}'
HOST/PORT
oauth-openshift.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
downloads-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
canary-openshift-ingress-canary.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
alertmanager-main-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-federate-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
thanos-querier-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
edge1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
int1reen2-test.internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
pass1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
reen1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
service-unsecure-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
int1edge2-test.internal1.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
test.shudi.com
%

% oc get route -A | awk '{print $3}' | grep apps.shudi
oauth-openshift.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
downloads-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
canary-openshift-ingress-canary.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
alertmanager-main-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
prometheus-k8s-federate-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
thanos-querier-openshift-monitoring.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
edge1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
pass1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
reen1-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
service-unsecure-test.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com
%

% oc get route -A | awk '{print $3}' | grep apps.shudi | wc -l
      12
% oc get route -A | awk '{print $3}' | grep internal1 | wc -l 
       2
% oc get route -A | awk '{print $3}' | grep shudi.com | wc -l
       1
%

5. only route unsvc5 had the shard=alpha label
 % oc get route unsvc5  -oyaml | grep labels: -A2
  labels:
    name: unsvc5
    shard: alpha
 % oc get route unsvc5 -oyaml | grep spec: -A1
  spec:
    host: test.shudi.com

6. login web console(https://https://console-openshift-console.apps.shudi-412gcpop36.qe.gcp.devcluster.openshift.com/monitoring/query-browser), then navigate to Observe >> Metrics 

7. input"route_metrics_controller_routes_per_shard ", then click the "Run queries" button. As the attached picture showed:
​​name                           value
default                        15
extertest3                     15
internal1                      15      
internal2                      1

8. Also there was a minor issue: As the attached picture showed, there were two name in the header line

Name                                           name      value                              
route_metrics_controller_routes_per_shard     default    15
route_metrics_controller_routes_per_shard     extertest3 15
route_metrics_controller_routes_per_shard     internal1  15
route_metrics_controller_routes_per_shard     internal2  1

Actual results:

​​name                         value 
default                      15
extertest3                   15 
internal1                    15
internal2                    1

Expected results:

​​name                         value
default                      12
extertest3                   0
internal1                    2 
internal2                    1

Additional info:

 

Description of problem:
When opening the Devfile sample developer catalog, switch the project in another browser tab, and then open devfile samples link in a new tab, the current project context is getting lost.

Version-Release number of selected component (if applicable):
4.12, expecting that this happen also in older versions

How reproducible:
Always

Steps to Reproduce:
1. Switch to the developer perspective, navigate to Add > Samples
2. Open a new browser tab and create a new project
3. Ctrl+click a sample in the first tab.

Actual results:
The project has also changed in the "Import sample" page

Expected results:
The project should be used also for the new "Import sample" page

Additional info:
We had this issue earlier for other catalog entries. Other samples works already fine, just the Devfile sample links doesn't contain the current namespace.

Description of problem:

Whereabouts reconciliation is not launched when

How reproducible:

Always

Steps to Reproduce:

1. oc edit the networks object and create a net-attach-def that references whereabouts – in a conflist.

Actual results:

The reconciler is not launched.

Expected results:

The reconciler is launched.

Description of problem:

The current version of openshift/cluster-dns-operator vendors Kubernetes 1.24 packages.  OpenShift 4.12 is based on Kubernetes 1.25.  

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. Check https://github.com/openshift/cluster-dns-operator/blob/release-4.12/go.mod  

Actual results:

Kubernetes packages (k8s.io/api, k8s.io/apimachinery, and k8s.io/client-go) are at version v0.24.0.

Expected results:

Kubernetes packages are at version v0.25.0 or later.

Additional info:

Using old Kubernetes API and client packages brings risk of API compatibility issues.

Description of problem:
OCP v4.9.31 cluster didn't have the $search domain in /etc/resolv.conf, which was there in the v4.8.29 OCP cluster. This was observed in all the nodes of the v4.9.31 cluster.
~~~
OpenShift 4.9.31
sh-4.4# cat /etc/resolv.conf

  1. Generated by KNI resolv prepender NM dispatcher script
    nameserver 172.xx.xx.xx
    nameserver 10.xx.xx.xx
    nameserver 10.xx.xx.xx
  2. nameserver 10.xx.xx.xx

OpenShift 4.8.29

  1. Generated by KNI resolv prepender NM dispatcher script
    search sepia.lab.iad2.dc.paas.redhat.com
    nameserver 172.xx.xx.xx
    nameserver 10.xx.xx.xx
    nameserver 10.xx.xx.xx
  2. nameserver 10.xx.xx.xx
    ~~~

ENV: OpenStack IAD2, IPI installation. Connected cluster.

Version-Release number of selected component (if applicable):
OCP v4.9.31

How reproducible:
Always

Steps to Reproduce:
1. Install IPI cluster on OpenStack IAD2 platform having cluster version 4.9.31
2. Debug to any of the node(master/worker)
3. Check and confirm the missing search domain on all nodes of the cluster.

Actual results:
The search domain was missing when checked in `/etc/resolv.conf` file on all nodes of the cluster causing serious issues in the cluster.

Expected results:
The installer should embed the search domain in /etc/resolv.conf file on all nodes of the cluster.

Additional info:

  • Cu was trying to deploy secure Kerberos on the CoreOS nodes and it failed when the IPA-client install command failed. This is when the customer noticed this unusual behavior. They did not manually update the resolv.conf file to include the $search domain. They instead added the script below to /etc/NetworkManager/dispatcher.d/ and restarted NetworkManager on the node to fix this issue and installation was successful.
    ~~~
    #!/bin/bash

set -eo pipefail

DISPATCHER_FILE="/etc/NetworkManager/dispatcher.d/30-resolv-prepender"
DOMAINS="$(grep -E '\s*DOMAINS=.*iad2.dc.paas.redhat.com' $DISPATCHER_FILE \

grep -oE '[a-z0-9]*.dev.iad2.dc.paas.redhat.com' \
tr '\n' ' ')"

>&2 echo "IT-PaaS: overwriting search domains in /etc/resolv.conf with: $DOMAINS"

sed -e "/^search/d" \
-e "/Generated by/c# Generated by KNI resolv prepender NM dispatcher script \nsearch $DOMAINS" \
/etc/resolv.conf > /etc/resolv.tmp

mv /etc/resolv.tmp /etc/resolv.conf
~~~

  • Cu confirms that the $search domain was missing since the cluster was freshly installed/ They even confirmed this with a fresh new cluster as well that it was missing.
  • The fresh cluster was initially installed at v4.9.31 but was updated afterward to v4.9.43 (the latest z-stream) to see if the updates fixed anything but it didn't make any difference. The cluster is currently running v4.9.43 and shows the $search domain missing in the /etc/resolv.conf file on all nodes.

Description of problem:

According to https://issues.redhat.com/browse/OCPBUGS-705, thanks Junyun share the test env/result for install part, and we need the fix in vsphere-problem-detector, currently it reports the following missing when using the pre-existing folder and/or resource pool with ReadOnly permission:
  
1. vcenter cluster set ReadOnly permission: 
I0902 10:07:50.324782       1 vsphere_check.go:244] CheckComputeClusterPermissions:jima-permission-q84s8-worker-86gd4 failed: missing privileges for compute cluster workloads: Resource.AssignVMToPool, VApp.AssignResourcePool, VApp.Import, VirtualMachine.Config.AddNewDisk


2. datacenter set ReadOnly permission:
I0902 08:09:19.462001       1 vsphere_check.go:225] CheckAccountPermissions failed: missing privileges for datacenter OCP-DC: Resource.AssignVMToPool, VApp.Import, VirtualMachine.Config.AddExistingDisk, VirtualMachine.Config.AddNewDisk, VirtualMachine.Config.AddRemoveDevice, VirtualMachine.Config.AdvancedConfig, VirtualMachine.Config.Annotation, VirtualMachine.Config.CPUCount, VirtualMachine.Config.DiskExtend, VirtualMachine.Config.DiskLease, VirtualMachine.Config.EditDevice, VirtualMachine.Config.Memory, VirtualMachine.Config.RemoveDisk, VirtualMachine.Config.Rename, VirtualMachine.Config.ResetGuestInfo, VirtualMachine.Config.Resource, VirtualMachine.Config.Settings, VirtualMachine.Config.UpgradeVirtualHardware, VirtualMachine.Interact.GuestControl, VirtualMachine.Interact.PowerOff, VirtualMachine.Interact.PowerOn, VirtualMachine.Interact.Reset, VirtualMachine.Inventory.Create, VirtualMachine.Inventory.CreateFromExisting, VirtualMachine.Inventory.Delete, VirtualMachine.Provisioning.Clone, VirtualMachine.Provisioning.DeployTemplate, VirtualMachine.Provisioning.MarkAsTemplate, Folder.Create, Folder.Delete 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-02-194931

How reproducible:

Always 

Steps to Reproduce:

See Description of problem

Actual results:

The vsphere-problem-detector operator reports privilege missing when using pre-existing folder and/or resource pool with ReadOnly permission

Expected results:

The vsphere-problem-detector operator should not reports privilege missing in that case.

Additional info:

 

There is a bug where creating OLM subscription manifests early in the installation process results in those OLM operators not being installed.

This is because the OLM installation Jobs fail when they are tried early in the installation process, and OLM does not retry those jobs sufficiently and eventually gives up on them.

This should be solved starting OCP 4.12, but until then, we should solve this using Assisted.

A way to solve this is to delay the installation of OLM operators to only occur after the cluster is up and healthy. 

This can be done by creating the subscriptions with "installPlanApproval" set to "Manual" instead of "Automatic". Then once the cluster is up and healthy, the assisted-controller should approve the InstallPlans that OLM will create for the operators. This will then trigger the installation which is more likely to succeed since the cluster is up and healthy at this point

This is a clone of issue OCPBUGS-1427. The following is the description of the original issue:

Description of problem:

Jump looks the worst on gcp, but looking closer Azure and AWS both jumped as well just not as high.

Disruption data indicates that the image registry on GCP was averaging around 30-40 seconds of disruption during an upgrade, until Aug 27th when it jumped to 125-135 seconds and has remained there ever since.

We see similar spikes in ingress-to-console and ingress-to-oauth. NOTE: image registry backend is also behind ingress, so all three are ingress related disruption.

https://datastudio.google.com/s/uBC4zuBFdTE

These charts show the problem on Aug 27 for registry, ingress to console, and ingress to oauth.

sdn network type appears unaffected.

Something merged Aug 26-27 that caused a significant change for anything behind ingress using ovn on gcp.

Description of problem:

On storageclass creation page, the dropdown items for "Reclaim policy" and "Volume binding tyep" are not marked for i18n.

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-08-22-143022

How reproducible:

always

Steps to Reproduce:
1.Go to storageclass creation page, check if dropdown items for "Reclaim policy" and "Volume binding type" support i18n.
2.
3.

Actual results:

1. They are not marked for i18n.

Expected results:

1. Should support i18n.

Additional info:

Description of problem:

Deployed hypershift cluster with recent multi-arch build. 
Storage cluster operator has become available but having below warning message


PowerVSBlockCSIDriverOperatorCRDegraded: PowerVSBlockCSIDriverStaticResourcesControllerDegraded: "rbac/attacher_role.yaml" (string): clusterroles.rbac.authorization.k8s.io "ibm-powervs-block-external-attacher-role" is forbidden: user "system:serviceaccount:openshift-cluster-csi-drivers:powervs-block-csi-driver-operator" (groups=["system:serviceaccounts" "system:serviceaccounts:openshift-cluster-csi-drivers" "system:authenticated"]) is attempting to grant RBAC permissions not currently held:
PowerVSBlockCSIDriverOperatorCRDegraded: PowerVSBlockCSIDriverStaticResourcesControllerDegraded: {APIGroups:["csi.storage.k8s.io"], Resources:["csinodeinfos"], Verbs:["get" "list" "watch"]}
PowerVSBlockCSIDriverOperatorCRDegraded: PowerVSBlockCSIDriverStaticResourcesControllerDegraded: "rbac/attacher_binding.yaml" (string): clusterroles.rbac.authorization.k8s.io "ibm-powervs-block-external-attacher-role" not found

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.Deploy 4.12.0-0.nightly-multi-2022-09-01-220105 nightly build

Actual results:

 

Expected results:

 

Additional info:

 

Description of problem:

openshift-apiserver, openshift-oauth-apiserver and kube-apiserver pods cannot validate the certificate when trying to reach etcd reporting certificate validation errors:

}. Err: connection error: desc = "transport: authentication handshake failed: x509: certificate is valid for ::1, 127.0.0.1, ::1, fd69::2, not 2620:52:0:198::10"
W1018 11:36:43.523673      15 logging.go:59] [core] [Channel #186 SubChannel #187] grpc: addrConn.createTransport failed to connect to {
  "Addr": "[2620:52:0:198::10]:2379",
  "ServerName": "2620:52:0:198::10",
  "Attributes": null,
  "BalancerAttributes": null,
  "Type": 0,
  "Metadata": null
}. Err: connection error: desc = "transport: authentication handshake failed: x509: certificate is valid for ::1, 127.0.0.1, ::1, fd69::2, not 2620:52:0:198::10"

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-10-18-041406

How reproducible:

100%

Steps to Reproduce:

1. Deploy SNO with single stack IPv6 via ZTP procedure

Actual results:

Deployment times out and some of the operators aren't deployed successfully.

NAME                                       VERSION                              AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.12.0-0.nightly-2022-10-18-041406   False       False         True       124m    APIServerDeploymentAvailable: no apiserver.openshift-oauth-apiserver pods available on any node....
baremetal                                  4.12.0-0.nightly-2022-10-18-041406   True        False         False      112m    
cloud-controller-manager                   4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
cloud-credential                           4.12.0-0.nightly-2022-10-18-041406   True        False         False      115m    
cluster-autoscaler                         4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
config-operator                            4.12.0-0.nightly-2022-10-18-041406   True        False         False      124m    
console                                                                                                                      
control-plane-machine-set                  4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
csi-snapshot-controller                    4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
dns                                        4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
etcd                                       4.12.0-0.nightly-2022-10-18-041406   True        False         True       121m    ClusterMemberControllerDegraded: could not get list of unhealthy members: giving up getting a cached client after 3 tries
image-registry                             4.12.0-0.nightly-2022-10-18-041406   False       True          True       104m    Available: The registry is removed...
ingress                                    4.12.0-0.nightly-2022-10-18-041406   True        True          True       111m    The "default" ingress controller reports Degraded=True: DegradedConditions: One or more other status conditions indicate a degraded state: DeploymentReplicasAllAvailable=False (DeploymentReplicasNotAvailable: 0/1 of replicas are available)
insights                                   4.12.0-0.nightly-2022-10-18-041406   True        False         False      118s    
kube-apiserver                             4.12.0-0.nightly-2022-10-18-041406   True        False         False      102m    
kube-controller-manager                    4.12.0-0.nightly-2022-10-18-041406   True        False         True       107m    GarbageCollectorDegraded: error fetching rules: Get "https://thanos-querier.openshift-monitoring.svc:9091/api/v1/rules": dial tcp [fd02::3c5f]:9091: connect: connection refused
kube-scheduler                             4.12.0-0.nightly-2022-10-18-041406   True        False         False      107m    
kube-storage-version-migrator              4.12.0-0.nightly-2022-10-18-041406   True        False         False      117m    
machine-api                                4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
machine-approver                           4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
machine-config                             4.12.0-0.nightly-2022-10-18-041406   True        False         False      115m    
marketplace                                4.12.0-0.nightly-2022-10-18-041406   True        False         False      116m    
monitoring                                                                      False       True          True       98m     deleting Thanos Ruler Route failed: Timeout: request did not complete within requested timeout - context deadline exceeded, deleting UserWorkload federate Route failed: Timeout: request did not complete within requested timeout - context deadline exceeded, reconciling Alertmanager Route failed: retrieving Route object failed: the server was unable to return a response in the time allotted, but may still be processing the request (get routes.route.openshift.io alertmanager-main), reconciling Thanos Querier Route failed: retrieving Route object failed: the server was unable to return a response in the time allotted, but may still be processing the request (get routes.route.openshift.io thanos-querier), reconciling Prometheus API Route failed: retrieving Route object failed: the server was unable to return a response in the time allotted, but may still be processing the request (get routes.route.openshift.io prometheus-k8s), prometheuses.monitoring.coreos.com "k8s" not found
network                                    4.12.0-0.nightly-2022-10-18-041406   True        False         False      124m    
node-tuning                                4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
openshift-apiserver                        4.12.0-0.nightly-2022-10-18-041406   True        False         False      104m    
openshift-controller-manager               4.12.0-0.nightly-2022-10-18-041406   True        False         False      107m    
openshift-samples                                                               False       True          False      103m    The error the server was unable to return a response in the time allotted, but may still be processing the request (get imagestreams.image.openshift.io) during openshift namespace cleanup has left the samples in an unknown state
operator-lifecycle-manager                 4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
operator-lifecycle-manager-catalog         4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m    
operator-lifecycle-manager-packageserver   4.12.0-0.nightly-2022-10-18-041406   True        False         False      106m    
service-ca                                 4.12.0-0.nightly-2022-10-18-041406   True        False         False      124m    
storage                                    4.12.0-0.nightly-2022-10-18-041406   True        False         False      111m  

Expected results:

Deployment succeeds without issues.

Additional info:

I was unable to run must-gather so attaching the pods logs copied from the host file system.

Description of problem:

When a user tries to run `oc debug,` they end up getting errors about pod security labels:

 Ensure the target namespace has the appropriate security level set or consider creating a dedicated privileged namespace using:
	"oc create ns <namespace> -o yaml | oc label -f - security.openshift.io/scc.podSecurityLabelSync=false pod-security.kubernetes.io/enforce=privileged pod-security.kubernetes.io/audit=privileged pod-security.kubernetes.io/warn=privileged".
Original error:
pods "ip-10-0-129-209ec2internal-debug" is forbidden: violates PodSecurity "restricted:latest": host namespaces (hostNetwork=true, hostPID=true, hostIPC=true), privileged (container "container-00" must not set securityContext.privileged=true), allowPrivilegeEscalation != false (container "container-00" must set securityContext.allowPrivilegeEscalation=false), unrestricted capabilities (container "container-00" must set securityContext.capabilities.drop=["ALL"]), restricted volume types (volume "host" uses restricted volume type "hostPath"), runAsNonRoot != true (pod or container "container-00" must set securityContext.runAsNonRoot=true), runAsUser=0 (container "container-00" must not set runAsUser=0), seccompProfile (pod or container "container-00" must set securityContext.seccompProfile.type to "RuntimeDefault" or "Localhost")
command failed, 3 retries left

This happens since https://docs.openshift.com/container-platform/4.11/authentication/understanding-and-managing-pod-security-admission.html

Fixing it requires the user running something like

oc create ns fips-check -o yaml | \
  oc label -f - \
  security.openshift.io/scc.podSecurityLabelSync=false \
  pod-security.kubernetes.io/enforce=privileged \
  pod-security.kubernetes.io/audit=privileged \
  pod-security.kubernetes.io/warn=privileged
Version-Release number of selected component (if applicable):

4.12

How reproducible:

Always

Steps to Reproduce:

1. Try to run `oc debug node/....` in a new namespace

Actual results:

Error message

Expected results:

oc debug works without the user having to perform additional steps. If namespace is omitted, perhaps oc debug could create a temporary one with the correct pod security labels?

Additional info:

We are seeing windows to linux networking failures, across all PRs.
This is occurring across all clouds.
Example test failure

seems this could have been due to the downstream merge, the windows jobs did not pass before the PR was merged
Job that failed against the downstream merge, but did not prevent it from merging

This is blocking all PRs against the WMCO repo.

Description of problem:

Not all rules removed from iptables after disabling multinetworkpolicy

Version-Release number of selected component (if applicable):

4.12

How reproducible:

100%

Steps to Reproduce:

1. Configure sriov (nodepolicy + sriovnetwork)
2. Configure 2 pods
3. enable MutiNetworkPolicy
4. apply ~20 rules for pod1:
 spec:
  podSelector:
    matchLabels:
      pod: pod1
  policyTypes:
  - Ingress
  ingress: []
5. Disable multinetworkpolicy
6. send ping pod2 => pod1

Actual results:

Traffic is still blocked

Expected results:

Traffic should be passed

Additional info:

Before disabling multiNetworkPolicy:
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default net-attach-def:ns1/sriovnetwork2" -j MULTI-0-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default24 net-attach-def:ns1/sriovnetwork2" -j MULTI-1-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default17 net-attach-def:ns1/sriovnetwork2" -j MULTI-2-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default15 net-attach-def:ns1/sriovnetwork2" -j MULTI-3-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default14 net-attach-def:ns1/sriovnetwork2" -j MULTI-4-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default7 net-attach-def:ns1/sriovnetwork2" -j MULTI-5-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default5 net-attach-def:ns1/sriovnetwork2" -j MULTI-6-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default20 net-attach-def:ns1/sriovnetwork2" -j MULTI-7-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default19 net-attach-def:ns1/sriovnetwork2" -j MULTI-8-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default11 net-attach-def:ns1/sriovnetwork2" -j MULTI-9-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default10 net-attach-def:ns1/sriovnetwork2" -j MULTI-10-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default9 net-attach-def:ns1/sriovnetwork2" -j MULTI-11-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default6 net-attach-def:ns1/sriovnetwork2" -j MULTI-12-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default3 net-attach-def:ns1/sriovnetwork2" -j MULTI-13-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default16 net-attach-def:ns1/sriovnetwork2" -j MULTI-14-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default13 net-attach-def:ns1/sriovnetwork2" -j MULTI-15-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default2 net-attach-def:ns1/sriovnetwork2" -j MULTI-16-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default22 net-attach-def:ns1/sriovnetwork2" -j MULTI-17-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default21 net-attach-def:ns1/sriovnetwork2" -j MULTI-18-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default18 net-attach-def:ns1/sriovnetwork2" -j MULTI-19-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default12 net-attach-def:ns1/sriovnetwork2" -j MULTI-20-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default8 net-attach-def:ns1/sriovnetwork2" -j MULTI-21-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default4 net-attach-def:ns1/sriovnetwork2" -j MULTI-22-INGRESS
-A MULTI-0-INGRESS -j DROP
-A MULTI-1-INGRESS -j DROP
-A MULTI-2-INGRESS -j DROP
-A MULTI-3-INGRESS -j DROP
-A MULTI-4-INGRESS -j DROP
-A MULTI-5-INGRESS -j DROP
-A MULTI-6-INGRESS -j DROP
-A MULTI-7-INGRESS -j DROP
-A MULTI-8-INGRESS -j DROP
-A MULTI-9-INGRESS -j DROP
-A MULTI-10-INGRESS -j DROP
-A MULTI-11-INGRESS -j DROP
-A MULTI-12-INGRESS -j DROP
-A MULTI-13-INGRESS -j DROP
-A MULTI-14-INGRESS -j DROP
-A MULTI-15-INGRESS -j DROP
-A MULTI-16-INGRESS -j DROP
-A MULTI-17-INGRESS -j DROP
-A MULTI-18-INGRESS -j DROP
-A MULTI-19-INGRESS -j DROP
-A MULTI-20-INGRESS -j DROP
-A MULTI-21-INGRESS -j DROP
-A MULTI-22-INGRESS -j DROP
=============================================================
After disabling multiNetworkPolicy:
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default5 net-attach-def:ns1/sriovnetwork2" -j MULTI-0-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default24 net-attach-def:ns1/sriovnetwork2" -j MULTI-1-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default17 net-attach-def:ns1/sriovnetwork2" -j MULTI-2-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default15 net-attach-def:ns1/sriovnetwork2" -j MULTI-3-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default7 net-attach-def:ns1/sriovnetwork2" -j MULTI-4-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default3 net-attach-def:ns1/sriovnetwork2" -j MULTI-5-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default20 net-attach-def:ns1/sriovnetwork2" -j MULTI-6-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default19 net-attach-def:ns1/sriovnetwork2" -j MULTI-7-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default9 net-attach-def:ns1/sriovnetwork2" -j MULTI-8-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default6 net-attach-def:ns1/sriovnetwork2" -j MULTI-9-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default16 net-attach-def:ns1/sriovnetwork2" -j MULTI-10-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default2 net-attach-def:ns1/sriovnetwork2" -j MULTI-11-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default22 net-attach-def:ns1/sriovnetwork2" -j MULTI-12-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default21 net-attach-def:ns1/sriovnetwork2" -j MULTI-13-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default18 net-attach-def:ns1/sriovnetwork2" -j MULTI-14-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default8 net-attach-def:ns1/sriovnetwork2" -j MULTI-15-INGRESS
-A MULTI-INGRESS -i int1 -m comment --comment "policy:deny-by-default4 net-attach-def:ns1/sriovnetwork2" -j MULTI-16-INGRESS
-A MULTI-0-INGRESS -j DROP
-A MULTI-1-INGRESS -j DROP
-A MULTI-2-INGRESS -j DROP
-A MULTI-3-INGRESS -j DROP
-A MULTI-4-INGRESS -j DROP
-A MULTI-5-INGRESS -j DROP
-A MULTI-6-INGRESS -j DROP
-A MULTI-7-INGRESS -j DROP
-A MULTI-8-INGRESS -j DROP
-A MULTI-9-INGRESS -j DROP
-A MULTI-10-INGRESS -j DROP
-A MULTI-11-INGRESS -j DROP
-A MULTI-12-INGRESS -j DROP
-A MULTI-13-INGRESS -j DROP
-A MULTI-14-INGRESS -j DROP
-A MULTI-15-INGRESS -j DROP
-A MULTI-16-INGRESS -j DROP

 

DVO metrics have some sensitive data that isn't desired to be sent outside the cluster. For that, IO must remove this data from the metrics before saving it to the archive and uploading it to the pipeline.

Remove the name and namespace from DVO metrics before saving it to the IO archive.

This is a clone of issue OCPBUGS-2841. The following is the description of the original issue:

Currently the agent installer supports only x86_64 arch. The image creation command must fail if some other arch is configured different from x86_64

We want to have an allowed list of architectures.

allowed = ['x86_64', 'amd64']

Description of problem:

catsrc is not ready due to "compute digest: compute hash: write tar: open /tmp/cache/cache: permission denied"

Version-Release number of selected component (if applicable):

zhaoxia@xzha-mac test % ../bin/opm version  
Version: version.Version{OpmVersion:"b94e073b5", GitCommit:"b94e073b5187ecaa687c322beccf76f1d1f26d54", BuildDate:"2022-08-29T06:30:05Z", GoOs:"darwin", GoArch:"amd64"}
zhaoxia@xzha-mac test % oc exec catalog-operator-79d885b755-6cnbp  -- olm --version
OLM version: 0.19.0
git commit: dfa7f0e70578432117e63867706630cda5366fb7

How reproducible:

always

Steps to Reproduce:

1. generate index image
zhaoxia@xzha-mac test % mkdir catalog
zhaoxia@xzha-mac test % ../bin/opm generate dockerfile catalog
zhaoxia@xzha-mac test % cat catalog.Dockerfile 
# The base image is expected to contain
# /bin/opm (with a serve subcommand) and /bin/grpc_health_probe
FROM quay.io/operator-framework/opm:latest


# Configure the entrypoint and command
ENTRYPOINT ["/bin/opm"]
CMD ["serve", "/configs", "--cache-dir=/tmp/cache"]


# Copy declarative config root into image at /configs and pre-populate serve cache
ADD catalog /configs
RUN ["/bin/opm", "serve", "/configs", "--cache-dir=/tmp/cache", "--cache-only"]


# Set DC-specific label for the location of the DC root directory
# in the image
LABEL operators.operatorframework.io.index.configs.v1=/configs

zhaoxia@xzha-mac test % docker build . -f catalog.Dockerfile -t quay.io/olmqe/nginxolm-operator-index:2726 
zhaoxia@xzha-mac test % docker push quay.io/olmqe/nginxolm-operator-index:2726

2. create catsrc
zhaoxia@xzha-mac test % cat catsrc.yaml 
apiVersion: operators.coreos.com/v1alpha1
kind: CatalogSource
metadata:
  name: test-index
  namespace: test-1
spec:
  displayName: Test
  publisher: OLM-QE
  sourceType: grpc
  image: quay.io/olmqe/nginxolm-operator-index:2726
  updateStrategy:
    registryPoll:
      interval: 10m

oc new-project test-1
oc apply -f catsrc.yaml 
 3. check pod status
zhaoxia@xzha-mac test % oc get pod
NAME               READY   STATUS             RESTARTS        AGE
test-index-hbqlv   0/1     Error              8 (5m13s ago)   16m
test-index-l6mzq   0/1     CrashLoopBackOff   10 (59s ago)    27m

zhaoxia@xzha-mac test % oc get pod test-index-hbqlv -o yaml
apiVersion: v1
kind: Pod
metadata:
  annotations:
    cluster-autoscaler.kubernetes.io/safe-to-evict: "true"
    k8s.v1.cni.cncf.io/network-status: |-
      [{
          "name": "openshift-sdn",
          "interface": "eth0",
          "ips": [
              "10.131.0.84"
          ],
          "default": true,
          "dns": {}
      }]
    k8s.v1.cni.cncf.io/networks-status: |-
      [{
          "name": "openshift-sdn",
          "interface": "eth0",
          "ips": [
              "10.131.0.84"
          ],
          "default": true,
          "dns": {}
      }]
    kubectl.kubernetes.io/last-applied-configuration: |
      {"apiVersion":"operators.coreos.com/v1alpha1","kind":"CatalogSource","metadata":{"annotations":{},"name":"test-index","namespace":"test-1"},"spec":{"displayName":"Test","image":"quay.io/olmqe/nginxolm-operator-index:2726","publisher":"OLM-QE","sourceType":"grpc","updateStrategy":{"registryPoll":{"interval":"10m"}}}}
    openshift.io/scc: restricted-v2
    seccomp.security.alpha.kubernetes.io/pod: runtime/default
  creationTimestamp: "2022-08-29T06:57:55Z"
  generateName: test-index-
  labels:
    catalogsource.operators.coreos.com/update: test-index
    olm.catalogSource: ""
    olm.pod-spec-hash: 777849c67c
  name: test-index-hbqlv
  namespace: test-1
  ownerReferences:
  - apiVersion: operators.coreos.com/v1alpha1
    blockOwnerDeletion: false
    controller: false
    kind: CatalogSource
    name: test-index
    uid: 5ef60ce9-6ade-43e1-bae4-7d69f6c9d5e0
  resourceVersion: "218774"
  uid: 7606a54a-6a7d-4979-833a-97c2f87a88b8
spec:
  containers:
  - image: quay.io/olmqe/nginxolm-operator-index:2726
    imagePullPolicy: Always
    livenessProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 3
      initialDelaySeconds: 10
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 5
    name: registry-server
    ports:
    - containerPort: 50051
      name: grpc
      protocol: TCP
    readinessProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 3
      initialDelaySeconds: 5
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 5
    resources:
      requests:
        cpu: 10m
        memory: 50Mi
    securityContext:
      allowPrivilegeEscalation: false
      capabilities:
        drop:
        - ALL
      readOnlyRootFilesystem: false
      runAsNonRoot: true
      runAsUser: 1001130000
    startupProbe:
      exec:
        command:
        - grpc_health_probe
        - -addr=:50051
      failureThreshold: 15
      periodSeconds: 10
      successThreshold: 1
      timeoutSeconds: 1
    terminationMessagePath: /dev/termination-log
    terminationMessagePolicy: FallbackToLogsOnError
    volumeMounts:
    - mountPath: /var/run/secrets/kubernetes.io/serviceaccount
      name: kube-api-access-bfzvh
      readOnly: true
  dnsPolicy: ClusterFirst
  enableServiceLinks: true
  imagePullSecrets:
  - name: test-index-dockercfg-wp8s4
  nodeName: qe-daily-412-0829-qf9lx-worker-1-djpwq
  nodeSelector:
    kubernetes.io/os: linux
  preemptionPolicy: PreemptLowerPriority
  priority: 0
  restartPolicy: Always
  schedulerName: default-scheduler
  securityContext:
    fsGroup: 1001130000
    seLinuxOptions:
      level: s0:c34,c4
    seccompProfile:
      type: RuntimeDefault
  serviceAccount: test-index
  serviceAccountName: test-index
  terminationGracePeriodSeconds: 30
  tolerations:
  - effect: NoExecute
    key: node.kubernetes.io/not-ready
    operator: Exists
    tolerationSeconds: 300
  - effect: NoExecute
    key: node.kubernetes.io/unreachable
    operator: Exists
    tolerationSeconds: 300
  - effect: NoSchedule
    key: node.kubernetes.io/memory-pressure
    operator: Exists
  volumes:
  - name: kube-api-access-bfzvh
    projected:
      defaultMode: 420
      sources:
      - serviceAccountToken:
          expirationSeconds: 3607
          path: token
      - configMap:
          items:
          - key: ca.crt
            path: ca.crt
          name: kube-root-ca.crt
      - downwardAPI:
          items:
          - fieldRef:
              apiVersion: v1
              fieldPath: metadata.namespace
            path: namespace
      - configMap:
          items:
          - key: service-ca.crt
            path: service-ca.crt
          name: openshift-service-ca.crt
status:
  conditions:
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    status: "True"
    type: Initialized
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    message: 'containers with unready status: [registry-server]'
    reason: ContainersNotReady
    status: "False"
    type: Ready
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    message: 'containers with unready status: [registry-server]'
    reason: ContainersNotReady
    status: "False"
    type: ContainersReady
  - lastProbeTime: null
    lastTransitionTime: "2022-08-29T06:57:55Z"
    status: "True"
    type: PodScheduled
  containerStatuses:
  - containerID: cri-o://54d7a5ba94c061fb86ad056ad964dbda2824c864c6fdcd2d7d5a7ada515bc70e
    image: quay.io/olmqe/nginxolm-operator-index:2726
    imageID: quay.io/olmqe/nginxolm-operator-index@sha256:d70f38fa773ea5030b5b80bfe34d9168aabff5039ead44b7f7e7cd76f8705eb1
    lastState:
      terminated:
        containerID: cri-o://54d7a5ba94c061fb86ad056ad964dbda2824c864c6fdcd2d7d5a7ada515bc70e
        exitCode: 1
        finishedAt: "2022-08-29T07:14:23Z"
        message: |+
          Error: compute digest: compute hash: write tar: open /tmp/cache/cache: permission denied
          Usage:
            opm serve <source_path> [flags]


          Flags:
                --cache-dir string         if set, sync and persist server cache directory
                --cache-only               sync the serve cache and exit without serving
                --debug                    enable debug logging
            -h, --help                     help for serve
            -p, --port string              port number to serve on (default "50051")
                --pprof-addr string        address of startup profiling endpoint (addr:port format)
            -t, --termination-log string   path to a container termination log file (default "/dev/termination-log")


          Global Flags:
                --skip-tls-verify   skip TLS certificate verification for container image registries while pulling bundles
                --use-http          use plain HTTP for container image registries while pulling bundles


        reason: Error
        startedAt: "2022-08-29T07:14:23Z"
    name: registry-server
    ready: false
    restartCount: 8
    started: false
    state:
      waiting:
        message: back-off 5m0s restarting failed container=registry-server pod=test-index-hbqlv_test-1(7606a54a-6a7d-4979-833a-97c2f87a88b8)
        reason: CrashLoopBackOff
  hostIP: 10.242.0.4
  phase: Running
  podIP: 10.131.0.84
  podIPs:
  - ip: 10.131.0.84
  qosClass: Burstable
  startTime: "2022-08-29T06:57:55Z" 

Actual results:

the status of pod for catsrc is not running

Expected results:

the status of pod for catsrc is running

Additional info:

When using project openshift-marketplace, the same error will be raised.

Error: compute digest: compute hash: write tar: open /tmp/cache/cache: permission denied

Description of problem:

when install private cluster, firstly failed , then need 
ibmcloud is security-group-rule-add "${infra}-sg-kube-api-lb" inbound tcp --port-min 6443 --port-max 6443 --remote $sg 

then openshift-install wait-for  again.

Version-Release number of selected component (if applicable):

 

How reproducible:

always

 

Steps to Reproduce:

1. try to create cluster with BYON, in install-config.yaml publish: Internal, install failed

Actual results:

firstly time, install failed

Expected results:

Just need install once. need not manually security-group-rule-add. 

Additional info:

https://coreos.slack.com/archives/C01U40AM37F/p1664439142279079?thread_ts=1663769891.358229&cid=C01U40AM37F

this issue blocked set up private cluster automatically

 

 

 

 

 

Description of problem:

In OCP 4.9, the package-server-manager was introduced to manage the packageserver CSV. However, when OCP 4.8 in upgraded to 4.9, the packageserver stays stuck in v0.17.0, which is the version in OCP 4.8, and v0.18.3 does not roll out, which is the version in OCP 4.9

Version-Release number of selected component (if applicable):

 

How reproducible:

Always

Steps to Reproduce:

1. Install OCP 4.8

2. Upgrade to OCP 4.9 

$ oc get clusterversion 
NAME      VERSION                             AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.8.0-0.nightly-2022-08-31-160214   True        True          50m     Working towards 4.9.47: 619 of 738 done (83% complete)

$ oc get clusterversion 
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.9.47    True        False         4m26s   Cluster version is 4.9.47
 

Actual results:

Check packageserver CSV. It's in v0.17.0 

$ oc get csv  NAME            DISPLAY          VERSION   REPLACES   PHASE packageserver   Package Server   0.17.0               Succeeded 

Expected results:

packageserver CSV is at 0.18.3 

Additional info:

packageserver CSV version in 4.8: https://github.com/openshift/operator-framework-olm/blob/release-4.8/manifests/0000_50_olm_15-packageserver.clusterserviceversion.yaml#L12

packageserver CSV version in 4.9: https://github.com/openshift/operator-framework-olm/blob/release-4.9/pkg/manifests/csv.yaml#L8

I saw the following while trying to debug the following "unexpectedly found multiple equivalent ACLs" error.

Add a generic networkpolicy:

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
name: allow-same-namespace
namespace: nbc9-demo-project
spec:
podSelector: {}
ingress:

  • from:
  • podSelector: {}
    policyTypes:
  • Ingress

$ kubectl get pod ovnkube-master-pk89w -o jsonpath='

{range .spec.containers[]} {@.image}

'
quay.io/openshift/okd-content@sha256:79ee71e045a7b224a132f6c75b4220ec35b9a06049061a6bd9ca9fc976c412e5

[root@dev-nkjpp-master-2 ~]# ovnkube -v
I0609 17:33:34.930787 58 ovs.go:93] Maximum command line arguments set to: 191102
Version: 0.3.0
Git commit: 7bf36eea28fe66365d0dfdf8c39e3311ea14d19b
Git branch: release-4.10
Go version: go1.16.6
Build date: 2022-05-27
OS/Arch: linux amd64

Which then fails to apply, retries, and when the networkpolicy is deleted, the ovnkube-master pod segfaults:

I0609 17:00:26.653710 1 policy.go:1092] Adding network policy allow-same-namespace in namespace nbc9-demo-project
E0609 17:00:26.656858 1 ovn.go:753] Failed to create network policy nbc9-demo-project/allow-same-namespace, error: failed to create default port groups and acls for policy: nbc9-demo-project/allow-same-namespace, error: unexpectedly found multiple equivalent ACLs: [

{UUID:7b55ba0c-150f-4a63-9601-cfde25f29408 Action:drop Direction:from-lport ExternalIDs:map[default-deny-policy-type:Egress] Label:0 Log:false Match:inport == @a7830797310894963783_egressDefaultDeny Meter:0xc0010df310 Name:0xc0010df320 Options:map[apply-after-lb:true] Priority:1000 Severity:0xc0010df330}

{UUID:60cb946a-46e9-4623-9ba4-3cb35f018ed6 Action:drop Direction:from-lport ExternalIDs:map[default-deny-policy-type:Egress] Label:0 Log:false Match:inport == @a7830797310894963783_egressDefaultDeny Meter:0xc0010df390 Name:0xc0010df3d0 Options:map[apply-after-lb:true] Priority:1000 Severity:0xc0010df3e0}

]
I0609 17:00:51.437895 1 policy_retry.go:46] Network Policy Retry: nbc9-demo-project/allow-same-namespace retry network policy setup
I0609 17:00:51.437935 1 policy_retry.go:63] Network Policy Retry: Creating new policy for nbc9-demo-project/allow-same-namespace
I0609 17:00:51.437941 1 policy.go:1092] Adding network policy allow-same-namespace in namespace nbc9-demo-project
I0609 17:00:51.438174 1 policy_retry.go:65] Network Policy Retry create failed for nbc9-demo-project/allow-same-namespace, will try again later: failed to create default port groups and acls for policy: nbc9-demo-project/allow-same-namespace, error: unexpectedly found multiple equivalent ACLs: [

{UUID:60cb946a-46e9-4623-9ba4-3cb35f018ed6 Action:drop Direction:from-lport ExternalIDs:map[default-deny-policy-type:Egress] Label:0 Log:false Match:inport == @a7830797310894963783_egressDefaultDeny Meter:0xc002215e00 Name:0xc002215e70 Options:map[apply-after-lb:true] Priority:1000 Severity:0xc002215e80}

{UUID:7b55ba0c-150f-4a63-9601-cfde25f29408 Action:drop Direction:from-lport ExternalIDs:map[default-deny-policy-type:Egress] Label:0 Log:false Match:inport == @a7830797310894963783_egressDefaultDeny Meter:0xc0022b0310 Name:0xc0022b03a0 Options:map[apply-after-lb:true] Priority:1000 Severity:0xc000070ab0}

]
I0609 17:01:02.679219 1 policy.go:1174] Deleting network policy allow-same-namespace in namespace nbc9-demo-project

E0609 17:01:02.679407 1 runtime.go:78] Observed a panic: "invalid memory address or nil pointer dereference" (runtime error: invalid memory address or nil pointer dereference)
goroutine 249 [running]:
k8s.io/apimachinery/pkg/util/runtime.logPanic(0x1c19c80, 0x2e9a810)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:74 +0x95
k8s.io/apimachinery/pkg/util/runtime.HandleCrash(0x0, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:48 +0x86
panic(0x1c19c80, 0x2e9a810)
/usr/lib/golang/src/runtime/panic.go:965 +0x1b9
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).destroyNetworkPolicy(0xc0022c2000, 0x0, 0xc000bb9000, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/policy.go:1210 +0x55
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).deleteNetworkPolicy(0xc0022c2000, 0xc002544f00, 0x0, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/policy.go:1198 +0x43f
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).WatchNetworkPolicy.func4(0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/ovn.go:800 +0xae
k8s.io/client-go/tools/cache.ResourceEventHandlerFuncs.OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:245
k8s.io/client-go/tools/cache.FilteringResourceEventHandler.OnDelete(0xc000f4c4c0, 0x2160f10, 0xc002f498c0, 0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:288 +0x6a
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*Handler).OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:52
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).newFederatedHandler.func3.1(0xc00463dbf0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:340 +0x65
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).forEachHandler(0xc0002c61b0, 0x1e7e840, 0xc002544f00, 0xc003dc9d60)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:114 +0x156
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).newFederatedHandler.func3(0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:339 +0x1b2
k8s.io/client-go/tools/cache.ResourceEventHandlerFuncs.OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:245
k8s.io/client-go/tools/cache.(*processorListener).run.func1()
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/shared_informer.go:779 +0x166
k8s.io/apimachinery/pkg/util/wait.BackoffUntil.func1(0xc002367760)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:155 +0x5f
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc003dc9f60, 0x2127a00, 0xc000229a70, 0x1bd5d01, 0xc000039740)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:156 +0x9b
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0xc002367760, 0x3b9aca00, 0x0, 0x1, 0xc000039740)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x98
k8s.io/apimachinery/pkg/util/wait.Until(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
k8s.io/client-go/tools/cache.(*processorListener).run(0xc0004f3180)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/shared_informer.go:771 +0x95
k8s.io/apimachinery/pkg/util/wait.(*Group).Start.func1(0xc0002bed80, 0xc000ed5850)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:73 +0x51
created by k8s.io/apimachinery/pkg/util/wait.(*Group).Start
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:71 +0x65
panic: runtime error: invalid memory address or nil pointer dereference [recovered]
panic: runtime error: invalid memory address or nil pointer dereference
[signal SIGSEGV: segmentation violation code=0x1 addr=0x0 pc=0x1a021d5]

goroutine 249 [running]:
k8s.io/apimachinery/pkg/util/runtime.HandleCrash(0x0, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/runtime/runtime.go:55 +0x109
panic(0x1c19c80, 0x2e9a810)
/usr/lib/golang/src/runtime/panic.go:965 +0x1b9
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).destroyNetworkPolicy(0xc0022c2000, 0x0, 0xc000bb9000, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/policy.go:1210 +0x55
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).deleteNetworkPolicy(0xc0022c2000, 0xc002544f00, 0x0, 0x0, 0x0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/policy.go:1198 +0x43f
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/ovn.(*Controller).WatchNetworkPolicy.func4(0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/ovn/ovn.go:800 +0xae
k8s.io/client-go/tools/cache.ResourceEventHandlerFuncs.OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:245
k8s.io/client-go/tools/cache.FilteringResourceEventHandler.OnDelete(0xc000f4c4c0, 0x2160f10, 0xc002f498c0, 0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:288 +0x6a
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*Handler).OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:52
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).newFederatedHandler.func3.1(0xc00463dbf0)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:340 +0x65
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).forEachHandler(0xc0002c61b0, 0x1e7e840, 0xc002544f00, 0xc003dc9d60)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:114 +0x156
github.com/ovn-org/ovn-kubernetes/go-controller/pkg/factory.(*informer).newFederatedHandler.func3(0x1e7e840, 0xc002544f00)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/pkg/factory/handler.go:339 +0x1b2
k8s.io/client-go/tools/cache.ResourceEventHandlerFuncs.OnDelete(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/controller.go:245
k8s.io/client-go/tools/cache.(*processorListener).run.func1()
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/shared_informer.go:779 +0x166
k8s.io/apimachinery/pkg/util/wait.BackoffUntil.func1(0xc002367760)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:155 +0x5f
k8s.io/apimachinery/pkg/util/wait.BackoffUntil(0xc003dc9f60, 0x2127a00, 0xc000229a70, 0x1bd5d01, 0xc000039740)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:156 +0x9b
k8s.io/apimachinery/pkg/util/wait.JitterUntil(0xc002367760, 0x3b9aca00, 0x0, 0x1, 0xc000039740)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:133 +0x98
k8s.io/apimachinery/pkg/util/wait.Until(...)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:90
k8s.io/client-go/tools/cache.(*processorListener).run(0xc0004f3180)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/client-go/tools/cache/shared_informer.go:771 +0x95
k8s.io/apimachinery/pkg/util/wait.(*Group).Start.func1(0xc0002bed80, 0xc000ed5850)
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:73 +0x51
created by k8s.io/apimachinery/pkg/util/wait.(*Group).Start
/go/src/github.com/openshift/ovn-kubernetes/go-controller/vendor/k8s.io/apimachinery/pkg/util/wait/wait.go:71 +0x65

Please let me know if any further information is required. I have a must-gather for this cluster but the file attachment tool in bugzilla won't let me attach anything larger than 19.5MB (the must-gather is 212.1MB)

Description of problem:

The service project and the host project both have a private DNS zone named as "ipi-xpn-private-zone". The thing is, although platform.gcp.privateDNSZone.project is set as the host project, the installer checks the zone of the service project, and complains dns name not match. 

Version-Release number of selected component (if applicable):

$ openshift-install version
openshift-install 4.12.0-0.nightly-2022-10-25-210451
built from commit 14d496fdaec571fa97604a487f5df6a0433c0c68
release image registry.ci.openshift.org/ocp/release@sha256:d6cc07402fee12197ca1a8592b5b781f9f9a84b55883f126d60a3896a36a9b74
release architecture amd64

How reproducible:

Always, if both the service project and the host project have a private DNS zone with the same name.

Steps to Reproduce:

1. try IPI installation to a shared VPC, using "privateDNSZone" of the host project

Actual results:

$ openshift-install create cluster --dir test7
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json" 
ERROR failed to fetch Metadata: failed to load asset "Install Config": failed to create install config: platform.gcp.privateManagedZone: Invalid value: "ipi-xpn-private-zone": dns zone jiwei-1026a.qe1.gcp.devcluster.openshift.com. did not match expected jiwei-1027a.qe-shared-vpc.qe.gcp.devcluster.openshift.com 
$ 

Expected results:

The installer should check the private zone in the specified project (i.e. the host project).

Additional info:

$ yq-3.3.0 r test7/install-config.yaml platform
gcp:
  projectID: openshift-qe
  region: us-central1
  computeSubnet: installer-shared-vpc-subnet-2
  controlPlaneSubnet: installer-shared-vpc-subnet-1
  createFirewallRules: Disabled
  publicDNSZone:
    id: qe-shared-vpc
    project: openshift-qe-shared-vpc
  privateDNSZone:
    id: ipi-xpn-private-zone
    project: openshift-qe-shared-vpc
  network: installer-shared-vpc
  networkProjectID: openshift-qe-shared-vpc
$ yq-3.3.0 r test7/install-config.yaml baseDomain
qe-shared-vpc.qe.gcp.devcluster.openshift.com
$ yq-3.3.0 r test7/install-config.yaml metadata
creationTimestamp: null
name: jiwei-1027a
$ 
$ openshift-install create cluster --dir test7
INFO Credentials loaded from file "/home/fedora/.gcp/osServiceAccount.json" 
ERROR failed to fetch Metadata: failed to load asset "Install Config": failed to create install config: platform.gcp.privateManagedZone: Invalid value: "ipi-xpn-private-zone": dns zone jiwei-1026a.qe1.gcp.devcluster.openshift.com. did not match expected jiwei-1027a.qe-shared-vpc.qe.gcp.devcluster.openshift.com 
$ 
$ gcloud --project openshift-qe-shared-vpc dns managed-zones list --filter='name=qe-shared-vpc'
NAME           DNS_NAME                                        DESCRIPTION  VISIBILITY
qe-shared-vpc  qe-shared-vpc.qe.gcp.devcluster.openshift.com.               public
$ gcloud --project openshift-qe-shared-vpc dns managed-zones list --filter='name=ipi-xpn-private-zone'
NAME                  DNS_NAME                                                    DESCRIPTION                         VISIBILITY
ipi-xpn-private-zone  jiwei-1027a.qe-shared-vpc.qe.gcp.devcluster.openshift.com.  Preserved private zone for IPI XPN  private
$ gcloud dns managed-zones list --filter='name=ipi-xpn-private-zone'
NAME                  DNS_NAME                                       DESCRIPTION                         VISIBILITY
ipi-xpn-private-zone  jiwei-1026a.qe1.gcp.devcluster.openshift.com.  Preserved private zone for IPI XPN  private
$ 
$ gcloud --project openshift-qe-shared-vpc dns managed-zones describe qe-shared-vpc
cloudLoggingConfig:
  kind: dns#managedZoneCloudLoggingConfig
creationTime: '2020-04-26T02:50:25.172Z'
description: ''
dnsName: qe-shared-vpc.qe.gcp.devcluster.openshift.com.
id: '7036327024919173373'
kind: dns#managedZone
name: qe-shared-vpc
nameServers:
- ns-cloud-b1.googledomains.com.
- ns-cloud-b2.googledomains.com.
- ns-cloud-b3.googledomains.com.
- ns-cloud-b4.googledomains.com.
visibility: public
$ 
$ gcloud --project openshift-qe-shared-vpc dns managed-zones describe ipi-xpn-private-zone         
cloudLoggingConfig:
  kind: dns#managedZoneCloudLoggingConfig
creationTime: '2022-10-27T08:05:18.332Z'
description: Preserved private zone for IPI XPN
dnsName: jiwei-1027a.qe-shared-vpc.qe.gcp.devcluster.openshift.com.
id: '5506116785330943369'
kind: dns#managedZone
name: ipi-xpn-private-zone
nameServers:
- ns-gcp-private.googledomains.com.
privateVisibilityConfig:
  kind: dns#managedZonePrivateVisibilityConfig
  networks:
  - kind: dns#managedZonePrivateVisibilityConfigNetwork
    networkUrl: https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/networks/installer-shared-vpc
visibility: private
$ 
$ gcloud dns managed-zones describe ipi-xpn-private-zone
cloudLoggingConfig:
  kind: dns#managedZoneCloudLoggingConfig
creationTime: '2022-10-26T06:42:52.268Z'
description: Preserved private zone for IPI XPN
dnsName: jiwei-1026a.qe1.gcp.devcluster.openshift.com.
id: '7663537481778983285'
kind: dns#managedZone
name: ipi-xpn-private-zone
nameServers:
- ns-gcp-private.googledomains.com.
privateVisibilityConfig:
  kind: dns#managedZonePrivateVisibilityConfig
  networks:
  - kind: dns#managedZonePrivateVisibilityConfigNetwork
    networkUrl: https://www.googleapis.com/compute/v1/projects/openshift-qe-shared-vpc/global/networks/installer-shared-vpc
visibility: private
$ 

 

 

Description of problem:

When alert raised for vSphere privilege check which is reported by vsphere-problem-detector, we could only get the very simple info as below:

 

=======================================

Description

The vsphere-problem-detector monitors the health and configuration of OpenShift on VSphere. If problems are found which may prevent machine scaling, storage provisioning, and safe upgrades, the vsphere-problem-detector will raise alerts.

 

Summary

VSphere cluster health checks are failing

 

Message

VSphere cluster health checks are failing with CheckAccountPermissions

=======================================

 

  1. Please add vSphere privilege check in the Description, currently only mention "prevent machine scaling, storage provisioning, and safe upgrades" 
  2. Could we at least add something like "Check vsphere-problem-detector pod log in openshift-cluster-storage-operator namespace to see the detail info" if we could not list which privilege is missing.

(We could get the namespace/pod info from metric, but I think adding it in alert Description or Message should be more clear)

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-12-152748

 

How reproducible:

Always

 

Steps to Reproduce:

See description

Actual results:

Alert info is not so clear

 

Expected results:

Add more Alert info

Description of problem:

Duplicate notification "Getting started" would be shown on Search page 

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-26-111919

How reproducible:

Always

Steps to Reproduce:

1. Login OCP as normal user, and change to developer prespective, create a new project
2. Delete the project on page (switch to Administator prespective, go to Home -> Projects page)
3. Switch to Developer prespective, and go to Search page, check the notification "Getting Started"

Actual results:

Two notification shown on page

Expected results:

Only one should exist

Additional info:

 

Description of problem:

Since openenshift/cluster-ingress-operator#817 merged, the e2e-aws-operator CI job has been failing for multiple PRs in the cluster-ingress-operator repository.  In particular, the TestScopeChange test has been consistently failing. Example failures:

The operator is repeatedly logging errors like the following in those failing CI jobs:

ERROR    operator.dns_controller    controller/controller.go:121    failed to delete dnsrecord; will retry    \{"dnsrecord": {"metadata":{"name":"scope-wildcard","namespace":"openshift-ingress-operator","uid":"2cb9936f-d6a0-4377-b3ed-c5167c5e9e4d","resourceVersion":"42217","generation":2,"creationTimestamp":"2022-10-13T16:19:23Z","deletionTimestamp":"2022-10-13T16:20:27Z","deletionGracePeriodSeconds":0,"labels":{"ingresscontroller.operator.openshift.io/owning-ingresscontroller":"scope"},"ownerReferences":[\{"apiVersion":"operator.openshift.io/v1","kind":"IngressController","name":"scope","uid":"713ac1c5-451b-42d1-89fd-c3910eb80fe3","controller":true,"blockOwnerDeletion":true}],"finalizers":["operator.openshift.io/ingress-dns"],"managedFields":[\{"manager":"ingress-operator","operation":"Update","apiVersion":"ingress.operator.openshift.io/v1","time":"2022-10-13T16:19:23Z","fieldsType":"FieldsV1","fieldsV1":{"f:metadata":{"f:finalizers":{".":{},"v:\"operator.openshift.io/ingress-dns\"":{}},"f:labels":\{".":{},"f:ingresscontroller.operator.openshift.io/owning-ingresscontroller":{}},"f:ownerReferences":\{".":{},"k:\{\"uid\":\"713ac1c5-451b-42d1-89fd-c3910eb80fe3\"}":{}}},"f:spec":\{".":{},"f:dnsManagementPolicy":{},"f:dnsName":{},"f:recordTTL":{},"f:recordType":{},"f:targets":{}}}},\{"manager":"ingress-operator","operation":"Update","apiVersion":"ingress.operator.openshift.io/v1","time":"2022-10-13T16:19:24Z","fieldsType":"FieldsV1","fieldsV1":{"f:status":{".":{},"f:observedGeneration":{},"f:zones":{}}},"subresource":"status"}]},"spec":\{"dnsName":"*.scope.ci-op-x1j7dsgt-43abb.origin-ci-int-aws.dev.rhcloud.com.","targets":["af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com"],"recordType":"CNAME","recordTTL":30,"dnsManagementPolicy":"Managed"},"status":\{"zones":[{"dnsZone":{"tags":{"Name":"ci-op-x1j7dsgt-43abb-45zhd-int","kubernetes.io/cluster/ci-op-x1j7dsgt-43abb-45zhd":"owned"}},"conditions":[\{"type":"Published","status":"True","lastTransitionTime":"2022-10-13T16:19:23Z","reason":"ProviderSuccess","message":"The DNS provider succeeded in ensuring the record"}]},\{"dnsZone":{"id":"Z2GYOLTZHS5VK"},"conditions":[\{"type":"Published","status":"True","lastTransitionTime":"2022-10-13T16:19:24Z","reason":"ProviderSuccess","message":"The DNS provider succeeded in ensuring the record"}]}],"observedGeneration":1}}, "error": "failed to get hosted zone for load balancer target \"af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com\": couldn't find hosted zone ID of ELB af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com", "errorCauses": [\{"error": "failed to get hosted zone for load balancer target \"af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com\": couldn't find hosted zone ID of ELB af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com"}, \{"error": "failed to get hosted zone for load balancer target \"af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com\": couldn't find hosted zone ID of ELB af6e309caa14c41eabe69f3f9eb15cf1-1656133782.us-west-2.elb.amazonaws.com"}]}}}

The scope-wildcard dnsrecord is created for the TestScopeChange test.

Using search.ci, it seems that the failures occurred many times on #817 before it merged and then started occurring for the other PRs after #817 merged.

I filed a PR, openshift/cluster-ingress-operator#838, that reverts #817. I have run the e2e-aws-operator CI job on this PR twice. While the job has failed both times, the TestScopeChange test did not fail either time.

At this point, we have strong evidence that #817 is causing TestScopeChange to fail.

Grant Spence did some testing and determined that there is some interaction between TestAllowedSourceRangesStatus and TestScopeChange. It may suffice to serialize some tests (TestScopeChanged is currently a parallel test, as is TestAllowedSourceRangesStatus and two other tests that #817 adds).

If the problem cannot be resolved by serializing tests, it may be necessary to revert #817 to unblock CI.

Note that this issue is blocking NE-942, NE-1072, and NE-682, as well as any bugfix PRs for the master branch in openshift/cluster-ingress-operator.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

Consistently.

Steps to Reproduce:

1. Run CI on a PR against the master branch of cluster-ingress-operator.

Actual results:

The TestScopeChange test fails as described.

Expected results:

TestScopeChange should not fail.

 

 

Description of problem:

When enabling OvS HWOL on 4.12.0 nightly, traffic does not pass between pods.

Version-Release number of selected component (if applicable):

4.12.0 nightly

How reproducible:

Always

Steps to Reproduce:

1. Create 2 pods with sriov and try to ping between them (same node or different node)

Actual results:

No Traffic Passes (Ping or other)

Expected results:

Traffic Passes (Ping or other)

Additional info:

Missing this commit in 4.12 branch
https://github.com/openshift/ovn-kubernetes/commit/37c6c1d7039fd4c8f3cca560691a254e720172de

Description of problem:

Git icon shown in the repository details page should be based on the git provider.

Version-Release number of selected component (if applicable):
4.11

How reproducible:
Always

Steps to Reproduce:
1. Create a Repository with gitlab repo url
2. Navigate to the detail page.

Actual results:

github icon is displayed for the gitlab url.

Expected results:

gitlab icon should be displayed for the gitlab url.

Additional info:

use `GitLabIcon` and `BitBucketIcon` from patternfly react-icons.

Description of problem:

The default dns-default pod is missing the "target.workload.openshift.io/management:" annotation. 

As a result when the workload partitioning feature is enabled on SNO, this pod resources will not get mutated and pinned to the reserved cpuset.

This is a regresion from 4.10. Pod spec from 4.10.17

Annotations:
...
   resources.workload.openshift.io/dns: {"cpushares": 51}
   resources.workload.openshift.io/kube-rbac-proxy: {"cpushares": 10}
   target.workload.openshift.io/management {"effect":"PreferredDuringScheduling"}

Version-Release number of selected component (if applicable):

4.11.0

How reproducible:

100%

Steps to Reproduce:

1. Install a SNO and check the annotation
2.
3.

Actual results:

 

Expected results:

 

Additional info:

 

 

Description of the problem:

During install, we assume all PVs on a host have been added to a volume group and only remove them if they are. This could let other PVs that are not attached to volume groups persist and prevent coreos from installing properly. 

Relevant assisted installer links:

https://github.com/openshift/assisted-installer/blob/9bec593930995220a2a4550b067f5a186de3b042/src/installer/installer.go#L809 

https://github.com/openshift/assisted-installer/blob/9bec593930995220a2a4550b067f5a186de3b042/src/ops/ops.go#L414

 

Found while investigating triage issue https://issues.redhat.com/browse/AITRIAGE-4017 

See slack thread for more details https://coreos.slack.com/archives/C02CP89N4VC/p1663263128420489 

How reproducible:

100%

Steps to reproduce:

1. Create a host with a PV w/o a volume group

2. Add host to cluster and install 

3. Observe the install fail

Actual results:

Installation fails with 

"Error: checking for exclusive access to /dev/sda 
Caused by:
| 0: couldn't reread partition table: device is in use |
| 1: EBUSY: Device or resource busy" 

Expected results:

All PVs and VGs are removed so that the installation will succeed

Description of problem:

If you set a services cluster IP to an IP with a leading zero (e.g. 192.168.0.011), ovn-k should normalise this and remove the leading zero before sending it to ovn.

This was seen by me on a CI run executing the k8 test here: test/e2e/network/funny_ips.go +75

you can reproduce using that above test.

Have a read of the text there:

 43 // What are funny IPs:  
 44 // The adjective is because of the curl blog that explains the history and the problem of liberal  
 45 // parsing of IP addresses and the consequences and security risks caused the lack of normalization,
 46 // mainly due to the use of different notations to abuse parsers misalignment to bypass filters.
 47 // xref: https://daniel.haxx.se/blog/2021/04/19/curl-those-funny-ipv4-addresses/   
 48 //     
 49 // Since golang 1.17, IPv4 addresses with leading zeros are rejected by the standard library.
 50 // xref: https://github.com/golang/go/issues/30999
 51 //     
 52 // Because this change on the parsers can cause that previous valid data become invalid, Kubernetes
 53 // forked the old parsers allowing leading zeros on IPv4 address to not break the compatibility.
 54 //     
 55 // Kubernetes interprets leading zeros on IPv4 addresses as decimal, users must not rely on parser
 56 // alignment to not being impacted by the associated security advisory: CVE-2021-29923 golang
 57 // standard library "net" - Improper Input Validation of octal literals in golang 1.16.2 and below
 58 // standard library "net" results in indeterminate SSRF & RFI vulnerabilities. xref:
 59 // https://nvd.nist.gov/vuln/detail/CVE-2021-29923                                                                                                     

northd is logging an error about this also:

|socket_util|ERR|172.30.0.011:7180: bad IP address "172.30.0.011" 
...
2022-08-23T14:14:21.968Z|01839|ovn_util|WARN|bad ip address or port for load balancer key 172.30.0.011:7180

 

Also, I see the error:

E0823 14:14:34.135115    3284 gateway_shared_intf.go:600] Failed to delete conntrack entry for service e2e-funny-ips-8626/funny-ip: failed to delete conntrack entry for service e2e-funny-ips-8626/funny-ip with svcVIP 172.30.0.011, svcPort 7180, protocol TCP: value "<nil>" passed to DeleteConntrack is not an IP address 

We should normalise the IPs before sending to OVN-k. I see also theres conntrack error when trying to set this bad IP.

 

Version-Release number of selected component (if applicable):

How reproducible:

Steps to Reproduce:
1. See above k8 test

Actual results:

Leading zero IP sent to OVN

Expected results:

No leading zero IP sent to OVN

Additional info:

Description of problem:

Install a single node cluster on AWS, then enable TechPreview, cause the cluster error. 
The CMA and CAPI CMA shouldn't be on the same port.

Version-Release number of selected component (if applicable):

4.11.9

How reproducible:

always

Steps to Reproduce:

1.Launch 4.11.9 single node cluster on AWS
liuhuali@Lius-MacBook-Pro huali-test % oc get clusterversion
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.9    True        False         34m     Cluster version is 4.11.9
liuhuali@Lius-MacBook-Pro huali-test % oc get co
NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.11.9    True        False         False      31m     
baremetal                                  4.11.9    True        False         False      49m     
cloud-controller-manager                   4.11.9    True        False         False      52m     
cloud-credential                           4.11.9    True        False         False      53m     
cluster-autoscaler                         4.11.9    True        False         False      48m     
config-operator                            4.11.9    True        False         False      50m     
console                                    4.11.9    True        False         False      37m     
csi-snapshot-controller                    4.11.9    True        False         False      49m     
dns                                        4.11.9    True        False         False      48m     
etcd                                       4.11.9    True        False         False      47m     
image-registry                             4.11.9    True        False         False      43m     
ingress                                    4.11.9    True        False         False      86s     
insights                                   4.11.9    True        False         False      43m     
kube-apiserver                             4.11.9    True        False         False      43m     
kube-controller-manager                    4.11.9    True        False         False      47m     
kube-scheduler                             4.11.9    True        False         False      44m     
kube-storage-version-migrator              4.11.9    True        False         False      50m     
machine-api                                4.11.9    True        False         False      44m     
machine-approver                           4.11.9    True        False         False      49m     
machine-config                             4.11.9    True        False         False      49m     
marketplace                                4.11.9    True        False         False      48m     
monitoring                                 4.11.9    True        False         False      56s     
network                                    4.11.9    True        False         False      52m     
node-tuning                                4.11.9    True        False         False      49m     
openshift-apiserver                        4.11.9    True        False         False      72s     
openshift-controller-manager               4.11.9    True        False         False      39m     
openshift-samples                          4.11.9    True        False         False      43m     
operator-lifecycle-manager                 4.11.9    True        False         False      49m     
operator-lifecycle-manager-catalog         4.11.9    True        False         False      49m     
operator-lifecycle-manager-packageserver   4.11.9    True        False         False      104s    
service-ca                                 4.11.9    True        False         False      50m     
storage                                    4.11.9    True        False         False      49m     
liuhuali@Lius-MacBook-Pro huali-test % oc get node
NAME                                         STATUS   ROLES           AGE   VERSION
ip-10-0-137-222.us-east-2.compute.internal   Ready    master,worker   53m   v1.24.0+dc5a2fd

2.Enable TechPreview
spec:
  featureSet: TechPreviewNoUpgrade

liuhuali@Lius-MacBook-Pro huali-test % oc edit featuregate                           
featuregate.config.openshift.io/cluster edited

3.Check the cluster
liuhuali@Lius-MacBook-Pro huali-test % oc get pod  -n openshift-cloud-controller-manager
NAME                                            READY   STATUS    RESTARTS       AGE
aws-cloud-controller-manager-5888c85fc6-28tgt   1/1     Running   12 (10m ago)   55m
liuhuali@Lius-MacBook-Pro huali-test % oc get clusterversion                            
NAME      VERSION   AVAILABLE   PROGRESSING   SINCE   STATUS
version   4.11.9    True        False         111m    Error while reconciling 4.11.9: the workload openshift-cluster-machine-approver/machine-approver-capi has not yet successfully rolled out
liuhuali@Lius-MacBook-Pro huali-test % oc get co
NAME                                       VERSION   AVAILABLE   PROGRESSING   DEGRADED   SINCE   MESSAGE
authentication                             4.11.9    False       False         False      9m44s   OAuthServerRouteEndpointAccessibleControllerAvailable: Get "https://oauth-openshift.apps.huliu-aws411arn2.qe.devcluster.openshift.com/healthz": context deadline exceeded (Client.Timeout exceeded while awaiting headers)...
baremetal                                  4.11.9    True        False         False      128m    
cloud-controller-manager                   4.11.9    True        False         False      131m    
cloud-credential                           4.11.9    True        False         False      133m    
cluster-api                                4.11.9    True        False         False      41m     
cluster-autoscaler                         4.11.9    True        False         False      128m    
config-operator                            4.11.9    True        False         False      129m    
console                                    4.11.9    False       True          False      10m     DeploymentAvailable: 0 replicas available for console deployment...
csi-snapshot-controller                    4.11.9    True        False         False      4m52s   
dns                                        4.11.9    True        False         False      128m    
etcd                                       4.11.9    True        False         False      127m    
image-registry                             4.11.9    True        False         False      123m    
ingress                                    4.11.9    True        False         False      3m15s   
insights                                   4.11.9    True        False         False      122m    
kube-apiserver                             4.11.9    True        False         False      123m    
kube-controller-manager                    4.11.9    True        False         False      126m    
kube-scheduler                             4.11.9    True        False         False      124m    
kube-storage-version-migrator              4.11.9    True        False         False      129m    
machine-api                                4.11.9    True        False         False      124m    
machine-approver                           4.11.9    True        False         False      128m    
machine-config                             4.11.9    True        False         False      129m    
marketplace                                4.11.9    True        False         False      128m    
monitoring                                 4.11.9    True        False         False      5m1s    
network                                    4.11.9    True        False         False      131m    
node-tuning                                4.11.9    True        False         False      128m    
openshift-apiserver                        4.11.9    True        False         False      23s     
openshift-controller-manager               4.11.9    True        False         False      118m    
openshift-samples                          4.11.9    True        False         False      122m    
operator-lifecycle-manager                 4.11.9    True        False         False      128m    
operator-lifecycle-manager-catalog         4.11.9    True        False         False      128m    
operator-lifecycle-manager-packageserver   4.11.9    True        False         False      2m43s   
service-ca                                 4.11.9    True        False         False      129m    
storage                                    4.11.9    True        False         False      69m     
liuhuali@Lius-MacBook-Pro huali-test %  

Actual results:

Cluster is broken

CMA is complaining,
 message: '0/1 nodes are available: 1 node(s) didn''t have free ports for the requested
      pod ports. preemption: 0/1 nodes are available: 1 node(s) didn''t have free
      ports for the requested pod ports.'

Expected results:

Cluster should be healthy

Additional info:

Talked with dev here https://coreos.slack.com/archives/GE2HQ9QP4/p1666178083034159?thread_ts=1666176493.224399&cid=GE2HQ9QP4

Must-Gather https://drive.google.com/file/d/1Q7Ddnhbg3Cq4ptBA2ycJnGKK01As1JcF/view?usp=sharing 

If enable TechPreview during installation on single node cluster, the cluster installation failed.

Description of problem:

vSphere privilege checking failing when providing user-defined folder and/or resource pool

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-08-30-054458

How reproducible:

consistently

Steps to Reproduce:

1. Provide pre-existing folder and/or resource pool to the install-config
2. Perform an installation with an account with read only privileges on the datacenter and cluster
3. The installer will fail with missing privileges for the cluster and datacenter.  When a pre-existing folder and resource pool are defined, the account can hold read only privileges on the datacenter and cluster .

Actual results:

Installer reports missing privileges

Expected results:

Installer should succeed

Additional info:

 

Searching recent 4.12 CI, there are a number of failures in the clusteroperator/machine-config should not change condition/Available test case:

$ w3m -dump -cols 200 'https://search.ci.openshift.org/?search=clusteroperator%2Fmachine-config+should+not+change+condition%2FAvailable&maxAge=48h&type=junit' | grep '4[.]12.*failures match' | sort
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-ovn-upgrade (all) - 129 runs, 53% failed, 6% of failures match = 3% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-aws-sdn-techpreview-serial (all) - 6 runs, 50% failed, 67% of failures match = 33% impact
periodic-ci-openshift-release-master-ci-4.12-e2e-azure-ovn-upgrade (all) - 60 runs, 50% failed, 3% of failures match = 2% impact
periodic-ci-openshift-release-master-ci-4.12-upgrade-from-stable-4.11-e2e-aws-ovn-upgrade (all) - 129 runs, 56% failed, 8% of failures match = 5% impact
periodic-ci-openshift-release-master-ci-4.12-upgrade-from-stable-4.11-e2e-azure-sdn-upgrade (all) - 129 runs, 69% failed, 12% of failures match = 9% impact
periodic-ci-openshift-release-master-ci-4.12-upgrade-from-stable-4.11-e2e-gcp-ovn-rt-upgrade (all) - 8 runs, 38% failed, 67% of failures match = 25% impact
periodic-ci-openshift-release-master-ci-4.12-upgrade-from-stable-4.11-e2e-gcp-ovn-upgrade (all) - 60 runs, 57% failed, 6% of failures match = 3% impact
periodic-ci-openshift-release-master-ci-4.12-upgrade-from-stable-4.11-e2e-gcp-sdn-upgrade (all) - 12 runs, 42% failed, 20% of failures match = 8% impact
periodic-ci-openshift-release-master-nightly-4.12-e2e-aws-sdn-upgrade (all) - 60 runs, 40% failed, 4% of failures match = 2% impact
periodic-ci-openshift-release-master-nightly-4.12-e2e-metal-ipi-sdn-serial-virtualmedia (all) - 6 runs, 100% failed, 17% of failures match = 17% impact
periodic-ci-openshift-release-master-nightly-4.12-e2e-metal-ipi-sdn-upgrade (all) - 6 runs, 67% failed, 25% of failures match = 17% impact
periodic-ci-openshift-release-master-nightly-4.12-e2e-metal-ipi-serial-ovn-dualstack (all) - 6 runs, 67% failed, 25% of failures match = 17% impact
periodic-ci-openshift-release-master-nightly-4.12-e2e-vsphere-ovn-techpreview-serial (all) - 9 runs, 56% failed, 20% of failures match = 11% impact
periodic-ci-openshift-release-master-nightly-4.12-upgrade-from-stable-4.11-e2e-metal-ipi-upgrade (all) - 6 runs, 100% failed, 17% of failures match = 17% impact
periodic-ci-openshift-release-master-nightly-4.12-upgrade-from-stable-4.11-e2e-metal-ipi-upgrade-ovn-ipv6 (all) - 6 runs, 83% failed, 20% of failures match = 17% impact
periodic-ci-openshift-release-master-okd-4.12-e2e-vsphere (all) - 25 runs, 100% failed, 4% of failures match = 4% impact
release-openshift-ocp-installer-e2e-gcp-serial-4.12 (all) - 6 runs, 83% failed, 20% of failures match = 17% impact

Doesn't seem like reason is getting set?

$ curl -s 'https://search.ci.openshift.org/search?name=periodic-ci-openshift-release-master-ci-4.12-e2e-aws-ovn-upgrade&search=clusteroperator%2Fmachine-config+should+not+change+condition%2FAvailable&maxAge=48h&type=junit&context=15' | jq -r 'to_entries[].value | to_entries[].value[].context[]' | grep 'clusteroperator/machine-config condition/Available status/False reason'
Aug 31 01:13:56.724 - 698s  E clusteroperator/machine-config condition/Available status/False reason/Cluster not available for [{operator 4.12.0-0.ci-2022-08-30-194744}]
Aug 31 09:09:15.460 - 1078s E clusteroperator/machine-config condition/Available status/False reason/Cluster not available for [{operator 4.12.0-0.ci-2022-08-30-194744}]
Sep 01 03:31:24.808 - 1131s E clusteroperator/machine-config condition/Available status/False reason/Cluster not available for [{operator 4.12.0-0.ci-2022-08-31-111359}]
Sep 01 07:15:58.029 - 1085s E clusteroperator/machine-config condition/Available status/False reason/Cluster not available for [{operator 4.12.0-0.ci-2022-08-31-111359}]

Example runs in the job I've randomly selected to drill into:

$ curl -s 'https://search.ci.openshift.org/search?name=periodic-ci-openshift-release-master-ci-4.12-e2e-aws-ovn-upgrade&search=clusteroperator%2Fmachine-config+should+not+change+condition%2FAvailable&maxAge=48h&type=junit' | jq -r 'keys[]'
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-ovn-upgrade/1564757706458271744
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-ovn-upgrade/1564879945233076224
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-ovn-upgrade/1565158084484009984
https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-ovn-upgrade/1565212566194491392

Drilling into that last run, the Available=False was the whole pool-update phase:

And details from the origin's monitor:

$ curl -s https://gcsweb-ci.apps.ci.l2s4.p1.openshiftapps.com/gcs/origin-ci-test/logs/periodic-ci-openshift-release-master-ci-4.12-e2e-aws-ovn-upgrade/1565212566194491392/artifacts/e2e-aws-ovn-upgrade/openshift-e2e-test/build-log.txt | grep clusteroperator/machine-config
Sep 01 07:15:57.629 E clusteroperator/machine-config condition/Degraded status/True reason/RenderConfigFailed changed: Failed to resync 4.12.0-0.ci-2022-08-31-111359 because: refusing to read osImageURL version "4.12.0-0.ci-2022-09-01-053740", operator version "4.12.0-0.ci-2022-08-31-111359"
Sep 01 07:15:57.629 - 49s   E clusteroperator/machine-config condition/Degraded status/True reason/Failed to resync 4.12.0-0.ci-2022-08-31-111359 because: refusing to read osImageURL version "4.12.0-0.ci-2022-09-01-053740", operator version "4.12.0-0.ci-2022-08-31-111359"
Sep 01 07:15:58.029 E clusteroperator/machine-config condition/Available status/False changed: Cluster not available for [{operator 4.12.0-0.ci-2022-08-31-111359}]
Sep 01 07:15:58.029 - 1085s E clusteroperator/machine-config condition/Available status/False reason/Cluster not available for [{operator 4.12.0-0.ci-2022-08-31-111359}]
Sep 01 07:16:47.000 I /machine-config reason/OperatorVersionChanged clusteroperator/machine-config-operator started a version change from [{operator 4.12.0-0.ci-2022-08-31-111359}] to [{operator 4.12.0-0.ci-2022-09-01-053740}]
Sep 01 07:16:47.377 W clusteroperator/machine-config condition/Progressing status/True changed: Working towards 4.12.0-0.ci-2022-09-01-053740
Sep 01 07:16:47.377 - 1037s W clusteroperator/machine-config condition/Progressing status/True reason/Working towards 4.12.0-0.ci-2022-09-01-053740
Sep 01 07:16:47.405 W clusteroperator/machine-config condition/Degraded status/False changed: 
Sep 01 07:18:02.614 W clusteroperator/machine-config condition/Upgradeable status/False reason/PoolUpdating changed: One or more machine config pools are updating, please see `oc get mcp` for further details
Sep 01 07:34:03.000 I /machine-config reason/OperatorVersionChanged clusteroperator/machine-config-operator version changed from [{operator 4.12.0-0.ci-2022-08-31-111359}] to [{operator 4.12.0-0.ci-2022-09-01-053740}]
Sep 01 07:34:03.699 W clusteroperator/machine-config condition/Available status/True changed: Cluster has deployed [{operator 4.12.0-0.ci-2022-08-31-111359}]
Sep 01 07:34:03.715 W clusteroperator/machine-config condition/Upgradeable status/True changed: 
Sep 01 07:34:04.065 I clusteroperator/machine-config versions: operator 4.12.0-0.ci-2022-08-31-111359 -> 4.12.0-0.ci-2022-09-01-053740
Sep 01 07:34:04.663 W clusteroperator/machine-config condition/Progressing status/False changed: Cluster version is 4.12.0-0.ci-2022-09-01-053740
[bz-Machine Config Operator] clusteroperator/machine-config should not change condition/Available
[bz-Machine Config Operator] clusteroperator/machine-config should not change condition/Degraded

No idea if whatever was happening there is the same thing that was happening in other runs, and I haven't checked 4.11 and earlier either. The test-case is non-fatal, so it doesn't break CI, but it can cause noise like ClusterOperatorDown if it continues for 10 or more minutes. Whic PromeCIeus says actually fired in this run, although apparently the origin monitors didn't notice to complain:

So parallel asks (and I'm happy to shard into separate bugs, if that's helpful):

  • Set a reason when you go Available=False, so Telemetry can collect information to aggregate and hunt for frequent reasons to prioritize improvements.
  • Figure out at least one reason why we're going Available=False in apparently healthy CI runs. If we find and fix one reason, we can circle back later to see if there are more that remain unfixed.

Description of problem:

Found during 1.25 rebase work, test hit this panic in two runs of 4.12-e2e-vsphere-ovn-upi-serial:

https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-nightly-4.12-e2e-vsphere-ovn-upi-serial/1567239801269129216

https://prow.ci.openshift.org/view/gs/origin-ci-test/logs/openshift-kubernetes-1360-nightly-4.12-e2e-vsphere-ovn-upi-serial/1567066819087306752

Full error for reference:

```github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/leafnodes/runner.go:107 +0x96
panic({0x766b520, 0xc183570})
    runtime/panic.go:838 +0x207
k8s.io/kubernetes/test/e2e/network.glob..func15.4()
    k8s.io/kubernetes@v1.24.0/test/e2e/network/ingressclass.go:97 +0x284
github.com/onsi/ginkgo/internal/leafnodes.(*runner).runSync(0x300000002?)
    github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/leafnodes/runner.go:113 +0xb1
github.com/onsi/ginkgo/internal/leafnodes.(*runner).run(0xc002466e40?)
    github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/leafnodes/runner.go:64 +0x125
github.com/onsi/ginkgo/internal/leafnodes.(*ItNode).Run(0x7f72ca69cfff?)
    github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/leafnodes/it_node.go:26 +0x7b
github.com/onsi/ginkgo/internal/spec.(*Spec).runSample(0xc003305b30, 0xc00066b208?, {0x8faff00, 0xc00045edc0})
    github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/spec/spec.go:215 +0x28a
github.com/onsi/ginkgo/internal/spec.(*Spec).Run(0xc003305b30, {0x8faff00, 0xc00045edc0})
    github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/spec/spec.go:138 +0xe7
github.com/onsi/ginkgo/internal/specrunner.(*SpecRunner).runSpec(0xc002480280, 0xc003305b30)
    github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/specrunner/spec_runner.go:200 +0xe8
github.com/onsi/ginkgo/internal/specrunner.(*SpecRunner).runSpecs(0xc002480280)
    github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/specrunner/spec_runner.go:170 +0x1a5
github.com/onsi/ginkgo/internal/specrunner.(*SpecRunner).Run(0xc002480280)
    github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/specrunner/spec_runner.go:66 +0xc5
github.com/onsi/ginkgo/internal/suite.(*Suite).Run(0xc0004762d0, {0x8fb0260, 0xc002ba2690}, {0x0, 0x0}, {0xc002bb8600, 0x1, 0x1}, {0x8ff18e0, 0xc00045edc0}, ...)
    github.com/onsi/ginkgo@v4.7.0-origin.0+incompatible/internal/suite/suite.go:62 +0x4b2
github.com/openshift/origin/pkg/test/ginkgo.(*TestOptions).Run(0xc0024b28c0, {0xc000311420, 0xc58c8b0?, 0x4f19d80?})
    github.com/openshift/origin/cmd/openshift-tests/openshift-tests.go:448 +0x32
github.com/openshift/origin/test/extended/util.WithCleanup(0xc002527bb8)
    github.com/openshift/origin/test/extended/util/test.go:168 +0xad
main.newRunTestCommand.func1(0xc0024cc780?, {0xc000311420, 0x1, 0x1})
    github.com/openshift/origin/cmd/openshift-tests/openshift-tests.go:448 +0x325
github.com/spf13/cobra.(*Command).execute(0xc0024cc780, {0xc0003113a0, 0x1, 0x1})
    github.com/spf13/cobra@v1.4.0/command.go:856 +0x67c
github.com/spf13/cobra.(*Command).ExecuteC(0xc000c3fb80)
    github.com/spf13/cobra@v1.4.0/command.go:974 +0x3b4
github.com/spf13/cobra.(*Command).Execute(...)
    github.com/spf13/cobra@v1.4.0/command.go:902
main.main.func1(0xc000de1700?)
    github.com/openshift/origin/cmd/openshift-tests/openshift-tests.go:94 +0x8a
main.main()
    github.com/openshift/origin/cmd/openshift-tests/openshift-tests.go:95 +0x476

fail [runtime/panic.go:220]: Test Panicked: runtime error: invalid memory address or nil pointer dereference
Ginkgo exit error 1: exit with code 1
```

Version-Release number of selected component (if applicable):

 

How reproducible:

 

Steps to Reproduce:

1.
2.
3.

Actual results:

Test hit panic

Expected results:

No panic

Additional info:

 

Description of problem:

TestUnmanagedDNSToManagedDNSInternalIngressController E2E test is failing on the error:
{
unmanaged_dns_test.go:272: failed to verify connectivity with workload with reqURL http://10.0.128.7 using external client: timed out waiting for the condition  

How reproducible:

About 75% of the time.

Version-Release number of selected component (if applicable):

4.12

How reproducible:

75%

Steps to Reproduce:

1. Run CI E2E tests on cluster-ingress-operator or 
make test-e2e TEST=TestUnmanagedDNSToManagedDNSInternalIngressController 

Actual results:

E2E test fails about 75% of the time

Expected results:

E2E should always pass

Additional info:

 

This is a clone of issue OCPBUGS-1061. The following is the description of the original issue:

Description of problem:

grant monitoring-alertmanager-edit  role to user

# oc adm policy add-cluster-role-to-user cluster-monitoring-view testuser-11

# oc adm policy add-role-to-user monitoring-alertmanager-edit testuser-11 -n openshift-monitoring --role-namespace openshift-monitoring

monitoring-alertmanager-edit user, go to administrator console, "Observe - Alerting - Silences" page is pending to list silences, debug in the console, no findings.

 

create silence with monitoring-alertmanager-edit user for Watchdog alert, silence page is also pending, checked with kubeadmin user, "Observe - Alerting - Silences" page shows the Watchdog alert is silenced, but checked with  monitoring-alertmanager-edit user, Watchdog alert is not silenced.

this should be a regression for https://bugzilla.redhat.com/show_bug.cgi?id=1947005 since 4.9, no such issue then, but there is similiar issue with 4.9.0-0.nightly-2022-09-05-125502 now

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-08-114806

How reproducible:

always

Steps to Reproduce:

1. see the description
2.
3.

Actual results:

administrator console, monitoring-alertmanager-edit user list or create silence, "Observe - Alerting - Silences" page is pending

Expected results:

should not be pending

Additional info:

 

 in order to have more info to be able to debug router issue in sno , we want to see if router is healthy from node network point of view and enable router access logs,

Lets revert when https://bugzilla.redhat.com/show_bug.cgi?id=2097041 will be found

Description of problem:

node_exporter collects network metrics for "virtual" interfaces like br-*. When OVN is used, it also reports metrics for ovs-*, ovn, and genev_sys_* interfaces.

Version-Release number of selected component (if applicable):

4.12 (and before)

How reproducible:

Always

Steps to Reproduce:

1. Launch a 4.12 cluster.
2. Run the following PromQL query: "group by(device) (node_network_info)"
3.

Actual results:

Expected results:

Only real host interfaces should be present.

Additional info:


Description of problem:

Deploy IPI cluster on multi datacenter/cluster vsphere env, installer failed with some reason, then tried to destroy cluster, and found that one vm folder under one of datacenters is not deleted.

When installer exit, following objects are attached with tag jima15b-cq7z7
sh-4.4$ govc tags.attached.ls jima15b-cq7z7 | xargs govc ls -L
/IBMCloud/vm/jima15b-cq7z7
/datacenter-2/vm/jima15b-cq7z7
/datacenter-2/vm/jima15b-cq7z7/jima15b-cq7z7-rhcos-us-west-us-west-1a
/IBMCloud/vm/jima15b-cq7z7/jima15b-cq7z7-rhcos-us-east-us-east-2a
/IBMCloud/vm/jima15b-cq7z7/jima15b-cq7z7-rhcos-us-east-us-east-3a
/IBMCloud/vm/jima15b-cq7z7/jima15b-cq7z7-rhcos-us-east-us-east-1a
/IBMCloud/vm/jima15b-cq7z7/jima15b-cq7z7-bootstrap

sh-4.4$ ./openshift-install destroy cluster --dir ipi_missingzones/
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-rhcos-us-west-us-west-1a
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-rhcos-us-east-us-east-2a
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-rhcos-us-east-us-east-3a
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-rhcos-us-east-us-east-1a
INFO Destroyed                                     VirtualMachine=jima15b-cq7z7-bootstrap
INFO Destroyed                                     Folder=jima15b-cq7z7
INFO Deleted                                       Tag=jima15b-cq7z7
INFO Deleted                                       TagCategory=openshift-jima15b-cq7z7
INFO Time elapsed: 55s       

After destroying cluster, folder jima15b-cq7z7 is still there, not deleted.
sh-4.4$ govc ls /datacenter-2/vm/ | grep jima15b-cq7z7
/datacenter-2/vm/jima15b-cq7z7                    

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-2022-09-18-141547

How reproducible:

always when installer fails to create infrastructure, it works when installation is successful. 

Steps to Reproduce:

1. deploy IPI cluster on vsphere env configured multi datacenter/cluster
2. installer failed to create infrastructure with some reason
3. destroy cluster
4. one folder is not deleted 

Actual results:

one folder is not deleted

Expected results:

All infrastructures created by installer should be removed

Additional info:

 

Description of problem:

failed to run command in pod with network-tools script pod-run-netns-command locally

Version-Release number of selected component (if applicable):

Client Version: 4.12.0-0.nightly-2022-07-25-055755
Kustomize Version: v4.5.4
Server Version: 4.12.0-0.nightly-2022-09-28-204419
Kubernetes Version: v1.24.0+8c7c967

How reproducible:

100%

Steps to Reproduce:

1.configure KUBECONFIG
[cloud-user@preserved-qiowang debug-scripts]$ export | grep kube
declare -x KUBECONFIG="/var/tmp/kubeconfig412"
[cloud-user@preserved-qiowang debug-scripts]$ oc get nodes
NAME                                                         STATUS   ROLES                  AGE     VERSION
qiowang-09291-chllb-master-0.c.openshift-qe.internal         Ready    control-plane,master   7h16m   v1.24.0+8c7c967
qiowang-09291-chllb-master-1.c.openshift-qe.internal         Ready    control-plane,master   7h16m   v1.24.0+8c7c967
qiowang-09291-chllb-master-2.c.openshift-qe.internal         Ready    control-plane,master   7h16m   v1.24.0+8c7c967
qiowang-09291-chllb-worker-a-2zq28.c.openshift-qe.internal   Ready    worker                 6h59m   v1.24.0+8c7c967
qiowang-09291-chllb-worker-b-226ft.c.openshift-qe.internal   Ready    worker                 6h59m   v1.24.0+8c7c967
qiowang-09291-chllb-worker-c-wq52c.c.openshift-qe.internal   Ready    worker                 6h59m   v1.24.0+8c7c967

2. clone the openshift/network-tools repo to local

3. create project test, create pod hello-world
[cloud-user@preserved-qiowang debug-scripts]$ oc project
Using project "test" on server "https://api.qiowang-09291.qe.gcp.devcluster.openshift.com:6443".
[cloud-user@preserved-qiowang debug-scripts]$ oc get pods
NAME                READY   STATUS    RESTARTS   AGE
hello-world-j9v9g   1/1     Running   0          68s
hello-world-rrwjf   1/1     Running   0          68s

4. run ping command in the pod hello-world-j9v9g with script pod-run-netns-command locally
[cloud-user@preserved-qiowang debug-scripts]$ ./network-tools pod-run-netns-command test hello-world-j9v9g ping 8.8.8.8 -c 5
ERROR: Command returned non-zero exit code, check output or logs.

Actual results:

failed to run command in pod hello-world-j9v9g with script pod-run-netns-command locally

Expected results:

can run ping 8.8.8.8 -c 5 in pod hello-world-j9v9g with script pod-run-netns-command locally

Additional info:

 

This is a clone of issue OCPBUGS-2727. The following is the description of the original issue:

Description of problem:

CVO recently introduced a new precondition RecommendedUpdate[1]. While we request an upgrade to a version which is not an available update, the precondition got UnknownUpdate and blocks the upgrade.

# oc get clusterversion/version -ojson | jq -r '.status.availableUpdates'null

# oc get clusterversion/version -ojson | jq -r '.status.conditions[]|select(.type == "ReleaseAccepted")'
{
  "lastTransitionTime": "2022-10-20T08:16:59Z",
  "message": "Preconditions failed for payload loaded version=\"4.12.0-0.nightly-multi-2022-10-18-153953\" image=\"quay.io/openshift-release-dev/ocp-release-nightly@sha256:71c1912990db7933bcda1d6914228e8b9b0d36ddba265164ee33a1bca06fe695\": Precondition \"ClusterVersionRecommendedUpdate\" failed because of \"UnknownUpdate\": RetrievedUpdates=False (VersionNotFound), so the recommended status of updating from 4.12.0-0.nightly-multi-2022-10-18-091108 to 4.12.0-0.nightly-multi-2022-10-18-153953 is unknown.",
  "reason": "PreconditionChecks",
  "status": "False",
  "type": "ReleaseAccepted"
}


[1]https://github.com/openshift/cluster-version-operator/pull/841/

Version-Release number of selected component (if applicable):

4.12.0-0.nightly-multi-2022-10-18-091108

How reproducible:

Always

Steps to Reproduce:

1. Install a 4.12 cluster
2. Upgrade to a version which is not in the available update
# oc adm upgrade --allow-explicit-upgrade --to-image=quay.io/openshift-release-dev/ocp-release-nightly@sha256:71c1912990db7933bcda1d6914228e8b9b0d36ddba265164ee33a1bca06fe695warning: The requested upgrade image is not one of the available updates.You have used --allow-explicit-upgrade for the update to proceed anywayRequesting update to release image quay.io/openshift-release-dev/ocp-release-nightly@sha256:71c1912990db7933bcda1d6914228e8b9b0d36ddba265164ee33a1bca06fe695 

Actual results:

CVO precondition check fails and blocks upgrade

Expected results:

Upgrade proceeds

Additional info:

 

I'd disabled Telemetry for the bulk of the CI fleet in OTA-740. But that lead to many
failures for:

[sig-instrumentation] Prometheus when installed on the cluster should report telemetry if a cloud.openshift.com token is present [Late] [Skipped:Disconnected] [Suite:openshift/conformance/parallel]

We should extend the checks for Telemetry enablement to include telemeterClient.enabled in the monitoring-specific ConfigMap, as well as the previously-checked pull-secret token.

Description of problem:

  intra namespace allow network policy doesn't work after applying ingress&egress deny all network policy

Version-Release number of selected component (if applicable):

  OpenShift 4.10.12

How reproducible:

Always

Steps to Reproduce:
  1. Define deny all network policy for egress an ingress in a namespace:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: default-deny-all
spec:
  podSelector: {}
  policyTypes:
  - Ingress
  - Egress

2. Define the following network policy to allow the traffic between the pods in the namespace:

apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
metadata:
  name: allow-intra-namespace-001
spec:
  egress:
  - to:
    - podSelector: {}
  ingress:
  - from:
    - podSelector: {}
  podSelector: {}
  policyTypes:
  - Ingress
  - Egress 

3. Test the connectivity between two pods from the namespace.

Actual results:

   The connectivity is not allowed

Expected results:

  The connectivity should be allowed between pods from the same namespace.

Additional info:

  After performing a test and analyzing SDN flows for the namespace: 

sh-4.4# ovs-ofctl dump-flows -O OpenFlow13 br0 | grep --color 0x964376 
 cookie=0x0, duration=99375.342s, table=20, n_packets=14, n_bytes=588, priority=100,arp,in_port=21,arp_spa=10.128.2.20,arp_sha=00:00:0a:80:02:14/00:00:ff:ff:ff:ff actions=load:0x964376->NXM_NX_REG0[],goto_table:30
 cookie=0x0, duration=1681.845s, table=20, n_packets=11, n_bytes=462, priority=100,arp,in_port=24,arp_spa=10.128.2.23,arp_sha=00:00:0a:80:02:17/00:00:ff:ff:ff:ff actions=load:0x964376->NXM_NX_REG0[],goto_table:30
 cookie=0x0, duration=99375.342s, table=20, n_packets=135610, n_bytes=759239814, priority=100,ip,in_port=21,nw_src=10.128.2.20 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=1681.845s, table=20, n_packets=2006, n_bytes=12684967, priority=100,ip,in_port=24,nw_src=10.128.2.23 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=99375.342s, table=25, n_packets=0, n_bytes=0, priority=100,ip,nw_src=10.128.2.20 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=1681.845s, table=25, n_packets=0, n_bytes=0, priority=100,ip,nw_src=10.128.2.23 actions=load:0x964376->NXM_NX_REG0[],goto_table:27
 cookie=0x0, duration=975.129s, table=27, n_packets=0, n_bytes=0, priority=150,reg0=0x964376,reg1=0x964376 actions=goto_table:30
 cookie=0x0, duration=99375.342s, table=70, n_packets=145260, n_bytes=11722173, priority=100,ip,nw_dst=10.128.2.20 actions=load:0x964376->NXM_NX_REG1[],load:0x15->NXM_NX_REG2[],goto_table:80
 cookie=0x0, duration=1681.845s, table=70, n_packets=2336, n_bytes=191079, priority=100,ip,nw_dst=10.128.2.23 actions=load:0x964376->NXM_NX_REG1[],load:0x18->NXM_NX_REG2[],goto_table:80
 cookie=0x0, duration=975.129s, table=80, n_packets=0, n_bytes=0, priority=150,reg0=0x964376,reg1=0x964376 actions=output:NXM_NX_REG2[]

We see that the following rule doesn't match because `reg1` hasn't been defined:

 cookie=0x0, duration=975.129s, table=27, n_packets=0, n_bytes=0, priority=150,reg0=0x964376,reg1=0x964376 actions=goto_table:30 

 

Description of problem:

health_statuses_insights metrics is showing disabled rules in "total". In other fields, it shows the correct amount.
In the code linked below, we can see that the "Disabled" rules are only skipped during the value assigning of TotalRisk

https://github.com/openshift/insights-operator/blob/master/pkg/insights/insightsreport/insightsreport.go#L268

How reproducible:

Always

Steps to Reproduce:

1. Upload a fake archive to trigger health checks (for example with rule CVE_2020_8555_kubernetes)
2. Disable one of the rules through https://console.redhat.com/api/insights-results-aggregator/v1/clusters/{cluster.id}/rules/{rule}/error_key/{error_key}/disable
3. Create support secret and set endpoint="https://httpstat.us/200"
4. restart insights operator
5. wait for alerts to trigger
6. Check health_statuses_insights metrics. 

rule:

ccx_rules_ocp.external.rules.ocp_version_end_of_life.report

error_key:

OCP4X_BEYOND_EOL

 

Actual results:

"moderate" health_statuses_insights shows 2 triggers
"total" shows 3. Therefore, it is accounting for the deactivated rule.

Expected results:

"moderate" health_statuses_insights shows 2 triggers
"total" health_statuses_insights shows 2 triggers (doesn't account for deactivated rule)

Additional info:

If there is any issue in triggering this events, you may contact me and I can help with the steps.

 

Description of problem:

OVN-Kubernetes master is crashing during upgrade from 4.11.5 to 4.11.6

Version-Release number of selected component (if applicable):

4.11.5 to 4.11.6
cannot clean up egress default deny ACL name: cannot update old NetworkPolicy ACLs for namespace ocm-myuser-1urk47c6ti1n94n1spdvo9902as3klar-sd6: error in transact with ops [{Op:update Table:ACL Row:map[action:drop direction:from-lport external_ids:{GoMap:map[default-deny-policy-type:Egress]} log:false match:inport == @a12995145443578534523_egressDefaultDeny meter:{GoSet:[acl-logging]} name:{GoSet:[ocm-myuser-1urk47c6ti1n94n1spdvo9902as3klar-sd6_egressDefaultDeny]} options:{GoMap:map[apply-after-lb:true]} priority:1000 severity:{GoSet:[info]}] Rows:[] Columns:[] Mutations:[] Timeout:<nil> Where:[where column _uuid == {5277db54-dd96-4c4d-bbed-99142cab91e7}] Until: Durable:<nil> Comment:<nil> Lock:<nil> UUIDName:}] results [{Count:0 Error:constraint violation Details:"ocm-myuser-1urk47c6ti1n94n1spdvo9902as3klar-sd6_egressDefaultDeny" length 65 is greater than maximum allowed length 63 UUID:{GoUUID:} Rows:[]}] and errors 


This is a clone of issue OCPBUGS-3084. The following is the description of the original issue:

Upstream Issue: https://github.com/kubernetes/kubernetes/issues/77603

Long log lines get corrupted when using '--timestamps' by the Kubelet.

The root cause is that the buffer reads up to a new line. If the line is greater than 4096 bytes and '--timestamps' is turrned on the kubelet will write the timestamp and the partial log line. We will need to refactor the ReadLogs function to allow for a partial line read.

https://github.com/kubernetes/kubernetes/blob/f892ab1bd7fd97f1fcc2e296e85fdb8e3e8fb82d/pkg/kubelet/kuberuntime/logs/logs.go#L325

apiVersion: v1
kind: Pod
metadata:
  name: logs
spec:
  restartPolicy: Never
  containers:
  - name: logs
    image: fedora
    args:
    - bash
    - -c
    - 'for i in `seq 1 10000000`; do echo -n $i; done'
kubectl logs logs --timestamps

Description of problem:

If a master fails and is drained, the old copy of the metal3 pod gets stuck in Terminating state for some (possibly long) time. While the new pod works correctly, CBO expects only one port to exist and thus cannot determine the applicable Ironic IP address.

Version-Release number of selected component (if applicable):

 

How reproducible: